CROPWAT A computer program for irrigation planning and management

INFIDATION AND DRAINAGE FAPER

46

155N 0254-5284

CROPWAT A computer program for irrigation planning and management

FAO IRRIGATION AND DRAINAGE PAPER

46

Developed by

Martin Smith Water Resources, Development and Management Service FAO Land and Water Development Division

Reprinted 1994, 1996

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsower on the part of the Food and Agnoutine Organization of the Unded Nations concerning the legal status of any country, iteritory, city or area or of its authorities, or concerning the delimitation of its tronter or boundaries.

> M-56 ISBN 92-5-103105-1

All rights reserved. No part of this publication may be reproduced, stored in a redrivel system, or transmitted in any torm or by any means, electronic, mechanical, photocopying or otherwise, without the prior permassion of the oppyright owner, Applications its oruch permission, while a statement of the purpose and extend of the reproduction, should be addressed to the Director, delet Terme of Cascala, 00100 Rome, laby.

© FAO 1992

FOREWORD

CROPWAT is a computer program for IBM-PCs or compatibles:

1	
TO CALCULATE	

- Reference evapotranspiration
- Crop water requirements
- Irrigation requirements
- Scheme water supply
- To develop: Irrigation schedules under various management conditions
- To estimate:
 Rainfed production and drought effects

To provide users with directions in the use of the CROPWAT program, a manual and guidelines have been prepared, contained in this publication.

PART 1 MANUAL OF CROPWAT

Provides directions on the various procedures of the computer program: how to install, to set up the program on a computer system, how to print and how to manage the various data files.

The procedures for the various program elements are explained, as well as the input of data, the concept of the calculations and the various printouts.

PART 2 GUIDELINES FOR CROPWAT

Provides a detailed example on the use of CROPWAT for the planning and management of irrigation projects.

Adequate attention is given to the collection and processing of data for input in CROPWAT.

Examples are given of the analysis of the printouts for planning, management and evaluation of irrigation systems.

Adequate attention is given to demonstration of the various applications of the Scheduling Program in:

- Indicative Irrigation Scheduling
- Evaluation of Irrigation Practices
- Rainfed Production and Supplementary Irrigation
- Deficit Irrigation

In the annexes the results of the various calculations are provided in a range of CROPWAT printouts.

CONTENTS

PART 1 __MANUAL OF CROPWAT

		Page
INTR	DUCTION	3
SETT	ING UP CROPWAT	4
2.1	Conditions of Use and Distribution	4
2.2	Installation	4
2.3	File Structure	5
GETT	ING STARTED ON CROPWAT	7
3.1	Main Menu	2
3.2	Printer Setting	2
3.3	Default Drive and Path for Data Input and Retrieval	9
ETo C	ALCULATIONS	ц
4.1	Input Climatic Data	ц
	4.1.1 Identification of climatic station	12
	4.1.2 Climate data input	13
4.2	Retrieval of ETo Data from Disk	14
4.3	Output	14
CROP	WATER REQUIREMENTS	17
5.1	Input Climate Data	17
	5.1.1 Input of ETo and rainfall from keyboard	18
	5.1.2 Retrieval ETo and rain data from disk	20
	5.1.3 Effective rainfall options	20
	5.1.4 Processing of climatic data	22
	5.1.5 Output	22
<u>5.2</u>	Input of Crop Data	23
	5.2.1 Input of crop data from keyboard	24
	5.2.2 Retrieval of crop data from disk	25
	5.2.3 Printing and saving of crop data	26
	5.2.4 Planting date	22
5.3	Crop Water Requirements Results	27
	5.3.1 CWR calculations	27
	5.3.2 Output and print of CWR	27
	5.3.3 Saving of CWR	28
5.4	Program Continuation	29
		This One

1EYU-6Q9-R6C3

6.	RICE WATER REQUIREMENTS					
	6.1	Input of Rice Data from Keyboard	31			
	6.2	Saving of Rice Data	32			
	6.3	Retrieval of Rice Data from Disk	32			
	6.4	Date of Transplanting	33			
	6.5	Rice Irrigation Calculations	33			
	6.6	Rice Irrigation Output	34			
	6.7	Program Continuation	34			
7	IRRIG	GATION SCHEDULING	35			
	7.1	Data Input for Irrigation Scheduling	35			
		7.1.1 Crop water requirements	35			
		7.1.2 Rainfall	35			
		7.1.3 Crop data	36			
		7.1.4 Soil data	36			
	7.2	Irrigation Scheduling Options	37			
		7.2.1 Timing options	37			
		7.2.2 Application option	40			
		7.2.3 Field irrigation efficiency	41			
	73	Irrigation Scheduling Calculations	42			
	7.4	Irrigation Scheduling Output	43			
		7.4.1 Irrigation calendar	44			
		7.4.2 Foral water use and yield reductions 7.4.3 Evaluation of the irrigation schedule	43			
	7.5	Program continuation	47			
8	SCHE	ME WATER SUPPLY	49			
	8.1	Data Input	49			
		8.1.1 Crop irrigation requirements	49			
		8.1.2 Cropped area	49			
	8.2	Calculations	50			
	8.3	Output	51			
ANNE	X 1	CROP CHARACTERISTICS	53			
	A.1	Length of crop development stages	55			
	A.2	Crop coefficients	57			
	8.3	Crop coefficients perennial crops	58			
	A.4	Son water depiction fraction	60			
	A.5	Vield servence factor	<u>e</u>			
	<u>a.o</u>	rielu response factor	02			

vi

CONTENTS

<u>1.</u>	INTRODUCTION						
2	CAL	ULATION OF REFERENCE EVAPOTRANSPIRATION	65				
	2.1	Introduction	65				
	2.2	Data Collection	65				
	2.3	Data Conversion	67				
	2.4	Climatic Data Input	68				
	2.5	Climatic Data and ETo Output	68				
	2.6	Climatic and ETo Data Saving	68				
3	PROC	ESSING OF RAINFALL DATA	69				
	3.1	Introduction	69				
	3.2	Rainfall Definitions	69				
	3.3	Rain Data Collection	70				
	3.4	Rain Data Processing	71				
	3.5	Effective Rainfall Method	72				
	3.6	Rain Data Input	72				
	3.7	Saving Climatic Data	73				
	3.8	Printout of Climatic Data	73				
4	CRO	PPING PATTERN AND CROP INFORMATION	74				
	4.1	Introduction	74				
	4.2	Data Collection	74				
	4.3	Cropping Pattern	74				
	4.4	Crop Data Input	74				
5.	CRO	WATER REQUIREMENT CALCULATIONS	77				
	5.1	File Input	77				
	5.2	CWR Calculations	78				
	5.3	CWR Field Files	79				
	5.4	Summary of CWR Calculations	80				
<u>6.</u>	SCHI	ME AND CANAL WATER REQUIREMENTS	81				
	6.1	Calculation Procedures	81				
	6.2	Field File Input	81				
	6.3	Scheme Water Requirements (SWR) Results	82				
	6.4	Evaluation of SWR Results	82				
7	IRRIG	GATION SCHEDULING	83				
	7.1	Introduction	83				
	7.2	Data Input	83				
		7.2.1 Soil data collection	83				
		7.2.2 Soil data input	84				

7.3	Irrigation Scheduling Applications	84				
	7.3.1 Development of indicative irrigation schedule 7.3.2 Evaluation of irrigation practices 7.3.3 Rainfed production and supplementary irrigation 7.3.4 Deficit irrigation	84 87 88 91				
APPENDIX 1	PRINTOUT CLIMATIC DATA FILES	93				
APPENDIX 2	CROP DATA FILES	97				
APPENDIX 3	CROP WATER REQUIREMENTS CALCULATIONS	101				
APPENDIX 4.1	IRRIGATION SCHEDULING RUNS	111				
APPENDIX 4.2	EVALUATION OF IRRIGATION PRACTICES					

PART 1

MANUAL OF CROPWAT

1. INTRODUCTION

PROGRAM TO CALCULATE IR AND	RIGATION REQUIREMENTS
GENERATE IRRIGAT	TION SCHEDULES
FOOD AND AGRICULTU	RE ORGANIZATION
LAND AND WATER DEVI	ELOPMENT DIVISION

CROPWAT is a computer program to calculate crop water requirements and irrigation requirements from climatic and crop data. Furthermore, the program allows the development of irrigation schedules for different management conditions and the calculation of scheme water supply for varying cropping patterns. The program will run on any IBM-PC type of computer with a minimum of 360 Kb.

Procedures for calculation of the crop water requirements and irrigation requirements are mainly based on methodologies presented in FAO Irrigation and Drainage Papers No. 24 "Crop water requirements" and No. 33 "Yield response to water", Concepts and calculation procedures for the irrigation schedules will be presented in a FAO publication on irrigation schedules, presently in preparation.

The program is meant as a practical tool to help both the Irrigation Engineer and Irrigation Agronomist to carry out standard calculations for design and management of irrigation schemes. It will further help in the development of recommendations for improved irrigation practices and the planning of irrigation schedules under varying water supply conditions.

CROPWAT version 5.6 is an update of earlier versions and includes a revised method for estimating reference crop evapotranspiration, adopting the approach of Penman-Monteith as recommended by the FAO Expert Consultation held in May 1990 in Rome. For further details, reference is made to the report of the concerned meeting.

CROPWAT version 5.7, based on the 5.6 version, facilitates the linkage to the CLIMWAT program, a climatic data base of 3261 stations of 144 countries worldwide in Asia, Africa, Near East, South Europe, Middle and South America.

The many positive comments and suggestions received on earlier versions have been an important encouragement to enhance the program further. Any further suggestions and comments are very much welcomed, to be directed to:

Water Resources, Development and Management Service/AGLW FAO, Via delle Terme di Caracalla, 00100 Rome, Italy

2. SETTING UP CROPWAT

2.1 Conditions of Use and Distribution

**** FAO COPYRIGHT AND WARRANTY ****

All rights reserved. No part of the procedures or program may be reproduced, altered or transmitted in any form or by any means without the priore pentisshor of the copyright holder, except in the cases of copies intended for security backups or for internal uses (i.e. not for distribution with or without a fee to third particle). Applications for such permission, explaining the purpose and extent, abould be addressed to the Director, Publications Division, FAO, Vin delle Terme eff carecalla, 80100 Rome, Italy.

However, data generated by the program may be used freely, provided that FAO can be cited as the source.

FAO declines all responsibility for any software errors or deficiencies, or for any damages arising from them, as well for program maintenance and upgrading, and documentation. However, users are encouraged to report any such errors or deficiencies of this product to FAO.

**	CROPWAT / Version 5.7 **********
Computer System:	IBM-PC XT/AT or Compatibles
Developed by:	Martin Smith Land and Water Development Division
Literature:	FAO Irrigation and Drainage Papers: - CROPWAT Manual and Guidelines - Crop Water Requirements - Yield Response to Water
For Information:	Land and Water Development Division, FAO, ROME

2.2 Installation

The CROPWAT 5.7 program comes on one disk (1.2 Mb, 5 1/4") which contains both program files and utilities and a range of data files. The program files included on the disk permit a direct start-up of CROPWAT when the computer is running under MSDOS (version 3.2). The program is called up by typing, after the system prompt, the name CROPWAT:

A:> cropwat

The program disk contains sufficient space to accommodate additional data files, and the program can run on a computer with only one drive. A two disk system is convenient to separate programs and data files, and will allow the effective storage of data on separate disks.

If the PC system is equipped with a hard disk, the CROPWAT program can be installed on the hard disk by copying the files from the floppy disk. This can be done by calling up the installation program (INSTALLH), which is included specifically for this purpose on the disk:

A:> installh

The installation program creates a subdirectory named CROPWAT to which the program and data files are copied in the respective directories. The installation program can also be used to copy CROPWAT conveniently to differently formatted diskettes, high density and 3/s⁺ diskettes.

2.3 File structure

The different program files are protected and cannot be addressed directly.

The CROPWAT data files are stored in different directories under different names. According to the type of data the files are distinguished by their extensions and arranged on three directories:

On the Climate Directory: A:\CLIMATE

-	PEN	climatic	data	file	wit	h monthly	data on	temperatur	e, humidit	у,	wind and	
		sunshine	as	well	as	evapotran	spiration	calculated	according	to	modified	
		Penman										

 *.CLI climatic data file with monthly data on reference evapotranspiration and rainfall together with calculated values of effective rainfall according to four possible methodologies

On the Crop Directory: A:\CROPS

 CRO crop data file containing data on length of growth stages, crop coefficients, rooting depth, depletion levels and yield response factors

On the Field Directory: A:\FIELDS

- *.SOL soil data file with data on available soil moisture
- *.FLD field data file containing date of planting and data on crop irrigation requirements.

The creation and modification of the different data files are done from within the CROPWAT program.

The deletion, copying or renaming of the data files, however, has to be carried out in the MS-DOS system environment, using the appropriate DOS commands, e.g.: A:\CROPS>del c-cotton.cro

to delete the crop data file c-cotton.crop in the crop data directory

A:\CROP>copy cotton.cro b:\PROJECT

to copy the data of the crop file cotton.cro to the directory in drive b:\PROJECT

A:\CROP>ren cotton.cro c-cotton.cro

4

to rename the cotton.cro file in c.cotton.cro etc.

To allow a systematic storage and overview of the different data files, the files are alphabetically sorted each time the CROPWAT program is closed.

By typing in the respective data directories the command:

A:\CLIMATE> dir *.CLI\w

an outprint of all files will be presented arranged according the file extension and file names:

Climate	files in Clim	ate Direct	OFY A: \CLIP	MTE:					
AL JOUF	CLI	SERN-DRY	CLI	BERN-NOR	CLI	SERN-WET	CLI	BERNARD	CLI
HAVA-834	CLI	HAVA - DRY	CLI	HAVA-NOR	CLI	HAVA-WET	CLI	KURN-79	CLI
KURN-82	CLI	KURN-AV	CLI	KURN-DRY	CLI	KURN-NOR	CLI	KURN-WET	CLI
HELAVER	CLI	HOSH - ACT	CLI	MOSH1 - AV	CLI				
Penman f	iles in Clima	te Directo	TY A:\CLINA	TE:					
BERNART	PEN	HAVANA	PEN	KURNOOL	PEN	LODWAR	PEN	NELKAWER	PEN
MOSH	PEN								
Crop fil	es in Crops D	irectory A	:\CROPS:						
ALFALFA	CRO	BANANA	CRO	BEANS	CRO	CITRUS	CRD	COTTON	CRD
DATES	CRD	GRAINS	CRD	GRONONUT	CRO	MAIZE	CRD	MANGO	CRD
PADDY	CRO	PASTURE	CRO	PULSES	CRO	R-COTT	CRO	R-GRNDNK	CRO
R-GRHONR	CRO	R-PADDY	CRO	R-SORGHU	CRO	RICE	CRO	SORGHUM	CRO
SUGARBET	CRO	SUGARCAN	CRD	TOBACCO	CRO	TOMATOES	CRD	VEGETABL	CRO
W-WHEAT	CRO								
Field fi	les in Fields	Directory	A:\FIELDS:						
RN-CT081	FLD	RN-GRD11	FLD	RN-GR012	FLD	RN-GR072	FLD	RN-GR081	FLD
RH-GR082	FLD	RM-GR122	FLD	PW-P0011	FLD	PM-P0072	FID	RN-P0073	FI D
RN-PD081	FLD	RN-PD082	FLD	RN-PD122	FLD	RN-PD123	FLD	RN-SC011	FLD
RN-50072	FLD	RN-50081	FLD						
Soil file	es in Fields I	irectory .	A:\FIELDS;						
BLCKCLAY	SOL	COARSTEX	SOL	FINETEX	SOL	HEAVY	SOL	LIGHT	SOL
LOAM	SOL	MEDITEX	SOL	MEDIUM	SOL	REDCLAY	SOL	SANDLOAM	SOL

3. GETTING STARTED ON CROPWAT

3.1 Main Menu

After loading the program, the title and information page appear successively on the screen. These are followed by the Main Menu, presenting the different program options of CROPWAT:

	PRO	OGRAM OPTIONS:	
	1.	ETo Penman-Monteith calculations	
	2.	Crop water requirements	
	3.	Irrigation scheduling	
	4.	Scheme water supply	
>	5.	Printer setting	
>	6.	Drive & path setting	
	9.	Exit CROPWAT	

Selection of one of the options directs the program to one of the following procedures:

- 1. Calculation of Reference Evapotranspiration, ETo, according to the Penman-Monteith approach
- Calculation of Crop Water Requirements, Effective Rain and Irrigation Requirements as well as the Rice Water Requirements calculation
- 3. Calculation of Irrigation Schedules
- 4. Calculation of Scheme Water Supply
- Initialization of the printer for different print modes or writing of files to a special print file on disk
- 6. Setting of the default drive and directory for the different data files

The options 1 to 4 are discussed in the next chapters. The printer and drive initialization are to be executed at the beginning of the program and are discussed in this chapter.

3.2 Printer Setting

During program execution the results of the various calculations can be printed on a connected printer or can be written to a separate diskfile, by responding with Y(es) to the following question: Do you want to PRINT (Y/N) : Y

1. Printer Initialization

Program option 5 'Printer setting' of the Main Menu allows to set and test the printing mode of the lineprinter, which should be set in the IBM printing mode for drawing of boxes. Unforunately some printers have deviating codes for the different printing modes and some settings may not work roperly with your printer.

	PRINTER SETTI	NG
To modify	the print setting choose o	ne of these options:
1.	Standard PICA print	(10 characters/inch
2.	ELITE print	(12 characters/inchi
3.	CONDENSED print	(17 characters/inch
4.	Print to DISK FILE	
5.	Return to Main Menu	
	Give your choice (1	-5) : 1

In addition the letter quality can be set:

Choose for	print setting	one of these options

- 1. Draft print
- 2. Letter quality
- Give your choice (1-2) ; I

A test print allows the evaluation of the different print options before a final choice is made.

2. Printer file

8

Instead of writing the results directly to the printer the output tables can be more conveniently written to a separate diskfile on a selected directory and drive. This would allow later editing of the tables and inclusion in reports.

The path and a convenient file name needs to be given.

PRINTER SETTING

To modify the print setting choose one of these options

Print to DISKFILE selected

Give the PATH : C:\WP51\DOC (return for default path A:\)

Give the FILE-NAME : Project.OUT (max 8 characters; without extension !!)

All print files are given the standard extension •.OUT and are written in ASCII format and can be retrieved in the DOS environment by any editor or word processor.

3.3 Default drive and path for data input and retrieval

To facilitate data saving and retrieval, the various data files can be stored on default drives and directories, allowing access to extensive data bases. This is of importance in particular for the linkage to the CLIMWAT data base where data are stored in 144 country-based directories on a series of disks.

The default directory can be easily modified within the program and a review of file listings provides an extra check on the availability of the correct data files.

The directories are grouped according to the type of files in climatic data files (*.PEN and *.CLI), crop data files (*.CRO) and field data files (*/SOL and */FLD).

Default DRIVE and PATH setting Default Drive and Path for data input and retrieval Climatic Data Files : A:CLIMATE\ Crop Data Files : A:CROPS) Soil & Field Data Files : A:FIELD\ (Press Return for NO change to default setting ...) Change any of the Directories (V(N) : N

When modifying drive and directory, the program will check the existence and readiness of drive and directory, and provides an option to view the file listing.

Once set, each saving and retrieval operation will automatically access the default drive and path.

Saving

After each input of a new set of data (climate, crop, soil) or when modifications are made to existing data files, the user is asked if the data need to be saved on the disk:

Do you want to SAVE data on DISK (Y/N) : Y

Care should be taken in naming the data file to be saved. A file name can have a maximum of eight characters. Points, commas and blanks are not accepted. No check is made on existing file names and a new filename may overwrite an existing file if an identical name is given. Try to find a logical, recognizable file name, for instance HAVA-AVE may denote climatic data of 1984. Havana, Cuba, for an average year, while HAVA-BK contains the climatic data of 1984.

Retrieving

10

Retrieval of previously-saved data is carried out from the default directory. A listing of all corresponding files on the screen allows selection and the correct orthographic input.

	Th	e following	.CRO	files are	on C:\C	ROPWAT	CROF	51:	
-	* = =		0 10 50 1				* ** **		
ALFALFA	CRO	BANANA	CRO	BE ANS	CRO	CABBAGE	CRO	C11RUS	CRO
COTTON	CRO	DATAPALN	CRO	GRAINS	CRO	GRAPE	CRO	GRASS	CRO
GRONDHUT	CRO	MAIZE	CRO	MANGO	CRO	ON 1 ON	CRO	PADOY	CRO
PASTURE	CRO	PEPPERS	CRO	POTATO	CRO	PULSES	CRO	RICE	CRO
SILONALS	CRO	SORGHUM	CRO	SOYBEAN	CRO	SUGARBET	CRO	SUGARCAN	CEO
STIMFT CLIP	CRO	SU-NELON	CRO	TORACCO	CRO	TOMATO	CRO	VEGETABL	CRO
and the second se									

4. ETo CALCULATIONS

The calculation of reference evapotranspiration from monthly climatic data, according to the FAO adapted Penman-Monteith approach, can be made by choosing option 1 in the Main Menu:

	PRO	OGRAM OPTIONS:		
			- 15	
->	1.	ETo Penman-Monteith calculations		
	4.	Crop water requirements		
	3.	Irrigation scheduling		
	4.	Scheme water supply		
	5.	Printer setting		
	6.	Drive & path setting		
	9.	Exit CROPWAT		

The program allows both the input of new climatic data for the Penman-Monteith calculations as well as the retrieval of an existing data set:

DATA INPUT ETo		
Input Climate Data for ETo calc.	1	
Retrieval of ETo data from disk	2	
Return to Main Menu	3	
Your Choice (1-3) : I		

4.1 Input climatic data

If Penman-Monteith calculations are to be carried out, data are requested on the following:

- Basic information on the climatic station: country name, station name, altitude, latitude and longitude.
- 2. Monthly climatic data on temperature, relative humidity, daily sunshine and windspeed.

4.1.1 Identification of climatic station

Information is required on the latitude and altitude of the climatological station from which the climatic data are collected. Data on country, climatic station and longitude is optional, as they do not affect calculations. The input of the information is presented as in the following example.

Input	Clim	ate Station
Name Country	:	KENYA
Climatological station	:	LODWAR
Altitude (metres)	:	506 metres
Latitude (0 - 80 °L)	:	3.08 N.L.
Longitude (0 - 180 °L)	:	35.37 E.L.

NOTE: If in the southern hemisphere, the latitude should be given as a negative value, likewise the longitude is noted negative for the western hemisphere.

Although by default the calculations will be carried out over all 12 months of the year, the data input may be restricted to a limited number of months, in response to the following questions:

> How many months to calculate (1-12) : 12 Give first month for data input (1-12) : 1

(January - Dec)

Mean monthly temperatures can be given as average daily temperature or as separate maximum and minimum temperatures. For one data set, this option should be set in advance:

Mean monthly temperatures can be given as:

- 1. Average daily temperature
- 2. Max. and min daily temperature

If mistakes have been made or to modify any information given on the climatic station, respond 'Y'(es) to the next question:

Any correction on Climatic Station (Y/N) : Y

4.1.2 Climate data input

After the information on the meteorological station has been provided, the input of climatic data on temperature, humidity, sunshine and windspeed is requested for each month.

- Temperature: Temperature data are provided in degrees Celsius either as average temperature or as maximum and minimum temperature data from which the average is calculated.
- Air humidity: Air humidity can he given as:
 - Relative humidity expressed in percent (10-100); or as
 - Vapour pressure in kPa (1-9);

The program automatically distinguishes between vapour pressure values (<10 kPa) and relative humidity (10-100%)¹.

Daily sunshine: The daily sunshine can be given as:

percentage (20-100) of the ratio sunshine/daylength;

- fraction (0-1) sunshine/day length; or as
- hours sunshine (1-20).

Values > 20 are interpreted as daily sunshine in %. Values < 1 as daily sunshine as fraction. Values > 1 and < 20 as sunshine in hours.

Windspeed: Windspeed can he given in km/day (10-500) or in m/s (0 -10).

Values > 10 are interpreted as windspeed in km/day. Values < 10 are interpreted as windspeed in m/sec.

All values concern averages of daily windrun measured over 24 hours.

Climatic Data Input			
Data for April			
Mean maximum temperature (°C)	:	32.6	°C
Mean minimum temperature (°C)	:	23.2	°C
Air humidity (% or kPa)	:	50	%
Windspeed (km/day or m/s)	:	129	km/day
Daily sunshine (hours or %)	:	8.4	hours

¹ If vapour pressure (e_d) is given, RH_{mean} is calculated according to RH_{mean} = 50 e_d (1/e_{e(Tmin)} + 1/e_{e(Tmax)}.

After completion of the data input, possible corrections can be made, followed by a display of the input data and calculated reference evapotranspiration.

Month	MaxTemp °C	MinTemp °C	Humid S	Wind km/day	Sunshine hours	Radiation MJ/m ³ /day	ETo- PonMon mm/day
January	32.6	23.2	50	129	8.4	22.3	5.49
		Any c	orrections	? (Y/N	0 : N		

Calculation of reference evaportanspiration is carried out according to the PenMon method as recommended by the FAO Expert Consultation held in Rome in May 1990. For details on the calculation procedures, reference is made to the concerned report of the meeting.

4.2 Retrieval of ETo data from disk

Option 2 in the ETo data input of the Penman subprogram allows the retrieval of previouslysaved data (files with extension PEN). A display of all concerned data files is shown from which the desired data file can be selected:

	Retri	ieve ETo & Clima	ite Data	
The	following .PEN	files are on C:\CF	ROPWAT\CLIM	ATE\:
BERMART PEN	RAYARA PER	EURNOOL PEN		HELKA-WE PEN
	Please enter	file name (without	.PEN) : lodwar	

4.3 Output

The results of ETo calculations are presented together with the climatic data' in a table, as shown. The table can be printed on the line printer (make sure the printer is properly connected !!) written to the printfile on a selected directory by answering Y(es) to following question:

Do you want to PRINT the climatic data (Y/N) : N

¹ Data from the CLIMWAT data base are given a reference to the source of climatic data as well as information on the length of the climatic data records.

Country : Altitude :	Ethi 737	opia metres	Meteo St Coordina	ation :	Melka 9.28 l	Werer N.L.	(13 yr) 40.23 E.L
Month	MaxTemp °C	MiaTemp °C	llunid. S	Wind km/day	Sunshine hours	Radiation MJ/m³/da Y	ETe- PenMon mm/day
January	31.6	15.7	55	147	8.4	19.7	4.8
February	32.8	16.5	55	121	8.5	21.2	4.9
March	34.3	18,7	52	112	8.5	22.4	5.3
April	36.0	19.7	53	104	8.4	22.5	5.4
May	36.4	20.5	47	112	8,3	21.8	5.5
June	37.4	22.7	42	181	8.5	21.6	6.6
July	35.0	21.3	56	181	7,2	19.9	5.8
Angust	33,3	20.0	62	147	7.0	20.0	5.2
September	35.1	20.2	54	130	7,8	21.3	5.4
Octoher	34.6	16.9	47	112	9.1	22.4	5.3
November	32.5	14.4	49	121	9.5	21.6	5.0
December	31.5	13.3	40	104	9.3	20.5	4.4
YEAR	34.2	18.3	51	131	8.4	21.4	1933

Reference Evapotranspiration ETo according Penman-Monteith

Possible modifications can be made:

Any modification (Y/N) : N

which allow any individual month to be recalculated. Incorrect data for April for instance, can be modified by responding:

How many months to recalculate (1-12) : I Give first month for data input (1-12) : 4 (April)

A new set of climatic data and ETo values or a possible modification of the climatic data can be saved on disk for future reference:

Do you want to SAVE the ETo data (Y/N) : Y

The user will be asked to provide an appropriate name for the data file.

The program will proceed to the Main Menu of CROPWAT:

Return to Main Menu (Y/N) : Y

or will be directed again to the ETo input menu when responding N(o).

5. CROP WATER REQUIREMENTS

Option 2 from the Main Menu should be selected to proceed to the calculation of crop water requirements:

	PROGRAM OPTIONS:	
	1. ETo Penman-Monteith calculations	
>	2. Crop water requirements	
	3. Irrigation scheduling	
	4. Scheme water supply	
	5. Printer setting	
	6. Drive & path setting	
	9. Exit CROPWAT	

This program element forms the central part of the CROPWAT program and is subdivided into three distinct parts;

- 5.1 the input and processing of monthly evaporation and rainfall data
- 5.2 the input of crop data and planting date
- 5.3 the calculation and output of crop water requirements.

The different program steps will be discussed in the following chapters.

5.1 Input Climate data

For the calculation of crop water requirements monthly data on reference evapotranspiration (ETo) and rainfall are required. For the input, the following options are given:

	INPUT ETo and RAIN DATA
	ETo and rainfall for CWR calculation
1.	Input of ETo and rainfall data
2.	Retrieve ETo and rain data from disk
3.	Retrieve ETo data from disk, rain new input
4.	Calculate ETo - PenMon from climatic data
5.	Return to Main Menu
	Your Choice (1-4) : 1

The input of data on reference evapotranspiration (ETo) and rainfall (Ptot), can be carried out either as:

- 1. Input of both ETo and rain monthly values from keyboard;
- Retrieval from disk of both ETo and Rain values from previously saved climate file (*.CLI). A listing of available climate files on disk will be displayed.
- Retrieval of ETo values from disk on Penman files (*.PEN) and input of monthly rain values from the keyboard. A listing of available ETo files will be displayed.
- Return to PENMAN program to calculate ETo from climate data, for which data on temperature, humidity, sunshine and wind are required.

In the selection of the monthly climatic data, special consideration should be given to the type of orianifid data. So planning purposes, swerage monthly values are normality taken, while for design purposes more extreme values corresponding with a certain probability of exceedance (70 > 80 %) are used. Analyses of long term data sets are required for this. For further details reference is made to the concerned literature and the examples given in the CROPWAT guidelines.

5.1.1 Input of ETo and rainfall from keyboard

The monthly ETc values identified by the name of the climatological station can be given in mm/day or in mm/month. The ETc data can be calculated according to Penman-Monteith using the PEINAN program section of CROPWAT, but can be obtained also through separate calculations using one of the correlation formulas such as Penman, Radiation, Blaney-Criddle from Evroparoian Pan data or any other ETo method.

CLIMATIC DATA INPUT

Name Climatological station: Rondugel

Will you give the Reference Evapotranspiration in:

ETo in mm/day for each month 1 ETo in mm/month 2

Your choice: ? 1

For the calculation of irrigation requirements an input of monthly rainfall data is required. The rainfall data used can be :

- average data
- actual or historical data;
- dependable rainfall;

For the latter type a statistical analysis has been carried out from a long term series of historical data. Rainfall data related to a certain probability of exceedance are thus defined and used in the calculations.

Reference Evapotran	spiration in mm/day
ETo January	? 6.1
ETo February	? 6.3
ETo March	? 6.1
ETo April	? 5.4
ETo May	? 4.4
ETo June	? 4.0
ETo July	? 4.0
ETo August	? 4.6
ETo September	? 5.5
ETo October	? 6.0
ETo November	? 6.2
ETo December	? 6.4

RAINFALL DATA	INP	UT	
Give Monthly Rainfall i	n nun	n/mo	nth
Rainfall in January	?	31	
Rainfall in February	?	38	
Rainfall in March	?	75	
Rainfall in April	?	20	1
Rainfall in May	?	11	5
Rainfall in June	?	15	
Rainfall in July	?	6	
Rainfall in August	?	10	
Rainfall in September	?	12	
Rainfall in October	?	23	
Rainfall in November	?	30	
Rainfall in December	?	- 41	

If only crop water requirements are required, the input of rainfall data can be set to ZERO, which effectively makes crop water requirements equal to irrigation requirements.

After input of data from the keyboard, the program will continue with the calculation of the effective rainfall as explained in section 5.1.3. A set of climatic data can be saved on disk and rotrieved at a later program session:

Do you want to SAVE data on DISK ? (Y/N); Y

The file name may include a reference to both the climatic station and to the type of data as shown in disk file table below. Notations like -NOR, -AVG, -DRY, -WET or -87 refer to statistically processed rainfall data with normal, average, 80%, 20% probability of exceedance or to historical data sets (for instance 1987).

5.1.2 Retrieval ETo and rain data from disk

The different climatic data files on disk, saved after earlier sessions or from the CLIMWAT data base, will be shown on screen from which a choice can be made:

							-
		The following	ng files	are on the d	ata-disl		
AL-JOUF	CLI	SERN-DRY	CL I	BERN-NOR	CLI	BERN-WET	CL I
BERMARD	ai	AVA-834	CLI	KAVA-DRT	G.I	KAVA-NOR	CLI
BAVA-MET	CLI	KURH-79	CLI	KURH-82	GL1	KURN-AV	CLI
KURN-NOR	GLI	KURM-WET	CLI	MELAMER	CLI	NOSH-ACT	CLI
NOSHI-AV	CLI						
					===:		
	-			1 2.4			

5.1.3 Effective rainfall options

As input of monthly rainfall, the average, dependable or actual rainfall data can be given. Care should be taken in selecting appropriate values for the dependable rainfall, based on separately carried out statistical analyses of long-term rainfall records.

EFFECTIVE RAINFALL	
Effective rainfall calculated accord	ding to:
Fixed percentage of rainfall	1
Dependable Rain (empirical form)	2
Empirical formula (locally dev)	3
USDA Soil Conservation Service	4
Rainfall not considered	5
Return to climate data screen	6
INFORMATION on effective rain	0
Your option (0-6): I	
Give percentage of effective minfo	11- 2 80

Dependable rainfall is defined as rainfall with a probability of exceedance of respectively :

- 80 % probability of exceedance, characterizing a "dry" year with rainfall in 4 out of 5 years exceeding, used as criteria for dimensioning of the irrigation system as well as for irrigation management to simulate a dry year supply schedule,
- 50 % probability, representing a "normal" year, approaching the average value,
- 20 % probability representing a "wet" year, used in irrigation management to simulate a wet year supply schedule.

To account for losses due to surface runoff and deep percolation the effective rainfall is used.

Four different methodologies are given to determine the effective rainfall. The different options are:

1. Fixed percentage of rainfall: effective rainfall is calculated according to:

$$P_{eff} = a.P_{tot}$$

where a is a fixed percentage to be given by the user to account for losses from runoff and deep percolation. Normally losses are around 10 to 30%, thus a = 0.7 - 0.9.

 Dependable Rain: based on an analysis carried out for different aird and sub-hundi climates an empirical formula was developed in FAO/AGLW to estimate dependable rainfall, the combined affect of dependable rainfall (80% prob.exc.) and estimated losses due to runoff and percolation. This formula may be used for design purposes where 80% probability of exceedance is required.

Calculation according to:

 $P_{eff} = 0.6 P_{tot} - 10 \text{ for } P_{tot} < 70 \text{ mm}$ $P_{eff} = 0.8 P_{tot} - 24 \text{ for } P_{tot} > 70 \text{ mm}$

 Empirical formula: The parameters may be determined from an analysis of local climatic records. An analysis of local climatic records may allow an estimation of effective rainfall. The relationship can, in most cases, be simplified by the following equations:

 USDA Soil Conservation Service Method: where effective rainfall can be calculated according to:

Note: In the water balance calculations, carried out for the irrigation scheduling (Chapter 7), the inate of rain into the soil is deterministic on a daily basis and rainfall losses due to deep percolation and surface runoff are estimated according to actual soil moisture content in the root cone. Togal rainfall and gas effective trainfall is therefore used for the water balance calculations; effective rainfall is calculated over the total growing sesson.

5.1.4 Processing of climatic data

Calculation of effective rainfall is carried out according to any of the four indicated methodologies. For the crop water requirement calculations, 10-day values of ETo and Peff are used. To convert monthly data to 10-day values, a linear interpolation is carried out.

Values for first and third decades are found by interpolation with the preceding and successive month respectively. To compensate for deviations in the maximum and minimum montha, a elevation is carried out to fulfil the condition that the 3 decade values average the given monthly average. The reiteration will take some seconds and the following message appears briefly on the screen:

Calculating decades Wait

5.1.5 Output

The climatic input data are presented in a table of monthly values of ETo, P_{tot} and P_{eff} with information on the climatic station and the effective rainfall method used.

	ETo (mm/day)	Rainfall (mm/month)	Eff. Rain (mm/month)
January	6.1	31.0	24.8
February	6.3	38.0	30.4
March	6.1	75.0	60.0
April	5.4	204.0	163.2
May	4.4	115.0	92.0
June	4.0	15.0	12.0
July	4.0	6.0	4.8
August	4.6	10.0	8.0
September	5.5	12.0	9.6
October	6.0	23.0	18.4
November	6.2	30.0	24.0
December	6.4	41.0	32.8
YEAR Total	1975.0	600.0	480.0 mm

The results can be at this stage printed to printer or printfile and saved if they concern a new data input or a modified data file.

In a separate menu the climatic data are saved under an appropriate name to be given by the user.

SA	VE CLIMATIC DATA
limate File: kurn-nor	Climate Station: KURNOOL
Give t (max 8 ch	he FILE-NAME : kurn-nor aracters; without extension !!)

Also modifications of the effective rainfall method or of another climate file can be done which will bring the user back to the concerned program sections.

5.2 Input of crop data

The input of crop data may concern either the input of new data (option 1) or the retrieval of data saved earlier (option 2).

CROP DATA INPUT		
Crop data from keyboard	1	
Retrieve crop data from disk	2	
Return to main menu	3	
Your choice ? N		

The program disk contains data files for a range of over 30 crops with general data based on global values (see FAO Irrigation and Drainage Paper No 24 'Crop water requirements' and No 33 'Yield response to water'). The crop data should be adjusted to local available data obtained through surveys or from recommendations of agricultural research stations.

5.2.1 Input of crop data from keyboard

The input of crop data required for crop water requirement calculations is carried out with the help of an input table as shown below. Either an empty table is given (option 1) or an existing crop data table is modified and separately saved.

	CRO	P DATA IN	PUT			
Crop : GROUNDNUT		Cro	file : gro	ndnut		
Growth stage		Initial	Devel	Mid	Late	Total
Crop stage	[days]	20	40	45	30	130
Crop coefficient	[coeff.]	0.40	->	1.10	0.70	
Rooting depth	[metre]	0.30	->	0.80	0.80	
Depletion level	[fract.]	0.45	->	0.45	0.50	
Yield response f.	[coeff.]	0.40	0.60	1.00	0.80	0.80

Note: For the input of rice data a different procedure is followed, described in chapter 6:

- Lengthe of the individual growing stages: Initial phase (A), development stage (B), mid-season (C) and late season (D). The length of the total growing season is calculated and can be used to check the input. The length of the growing stages will depend mainly on variety and growth conditions, in particular temperature. Values need therefore to be checked and adjusted for each location and erowing season.
- Crop factors (Kc) for initial stage, mid-season stage and at harvest are to be given. Kc values for development stage are interpolated. Indicative values for lengths of growing stages and Kc values can be found in Annex 1. A range of crop files are included with CROPWAT which can be used as reference values.

For calculation of <u>irrigation schedules</u>, additional inputs are required on rooting depth, depletion levels and yield response factors.

- Rooting depth (D): The depth of soil water which can be used effectively by the crop, defined as the Readily Available Soil Moisture (RAM), depends directly on the rooting depth of the crop. Two values are required:
 - rooting depth of initial stage, normally taken as 0.25 0.30 m, representing the
 effective soil depth from which the small seedling abstracts its water;
 - rooting depth at full development at start of mid-season. For most irrigated field crops values vary between 1 and 1.40, vegetable crops 0.50 - 1.00.

Rooting depth at development and late season are interpolated values and no input is required.

- 4. Allowable depletion (g) represents the critical soil moisture level where first drought stress occurs affecting evaportamprison and crops production. Values are expressed as a fraction of total available soil moisture and normally vary between 0.4 and 0.6, with lower values taken for sensitive crops with limited root systems under high evaporative conditions, and higher values for deep and densely rooting crops and low evaporation rates.
- Yield response factor (Ky) to estimate yield reductions due to drought stress; yield response factors have to be given for each growth stages.

Values for the different crop characteristics can be found in Annex 1. For further details, reference is made to Irrigation and Drainage Papers 24 and 33.

For perennial crops a somewhat different procedure needs to be followed as the four growth staget as distinguished for essencial crops do not normally conside with those of the permital crops. For CROPWAT calculations, Kc can be taken constant over the year (four stages of 90 days) with planning date J January or four stages can be distinguished in the growing season and a convenient planning date selected. To illustrate the procedures, reference is made to the cample given in Annet 4.

5.2.2 Retrieval of crop data from disk

Input of crop data can be made from files previously saved on disk. A list of the available crop files is presented from which a choice can be made:

			KL I	KIL TE C	NOI 1	/313			
	The	following	CRO	filer are o		POPWAT	CROE	s	
	===:	10110 wing .	===		====	=====			
ALFALFA	080	BAMANA	CRO	OF ANS	080	CANNAGE	080	CITRUS	CRO
COTTON	CRO	DATEPALM	CRO	GRAINS	CRO	GRAPE	CRO	CRASS.	020
GRONDMIT	080	MA17F	CRO	MANCO	080	OWIGH	CR0	PADOT	CRO
PASTURE	CRO	PEPPERS	CRO	POTATO	CRO	PULSES	CRO	RICE	CRO
2 I AMOUT	CRO	SORGIUM	CRO	SOTREAM	CR0	SUCARBET	CRO	SUGARCAN	CRO
SUNFLOW	080	SM-NELON	CRO	TOBACCO	CR0	TOMATO	CRO	VEGETABL	CRO
U-UNEAT	CRO	WHEAT	CRO						

5.2.3 Printing and saving of crop data

To allow a quick overview of the crop data, data are displayed. Possible modifications of any crop data can be conveniently carried out at any stage of data input. For any modification in crop data the user is prompted for a saving under a separate file name:

Any modifications on crop data	(Y/N) Y
 - Revise length growth stages	(Y/N) Y
 - Revise Crop Coefficient	(Y/N) N
 - Revise Rooting Depth	(Y/N) N
 - Revise Allowable Depletion	(Y/N) N
 - Revise Yield Response Factor	(Y/N) N
 Other Crop Input	(Y/N) N

Also a printout of the crop data table is possible:

Do you want to PRINT the crop data (Y/N) Y

If a new set of data has been given, or if crop data have been modified, the user is prompted for saving under a separate file name:

Do you want to SAVE the crop data (Y/N) Y

Care should be taken in naming the crop file. The program disk contains a series of standard crop files which may be used as a reference. To distinguish the standard files from future crop files, a clear notification should be used. It is recommended to use a one or two letter prefix code (C-COTTON) to distinguish typical project crop files which, through the automatic sorting routine, can be easily identified.

SAVE CR	OP DATA
Crop File : r-grondn	Crop: GROUNDNUT
Give the FILE N (max 8 characters;	NAME : r-grondn without extension !!)

5.2.4 Planting date

The date of planning is a separate crop data input, normally to be determined from climatic conditions (for instance rainy season) and local agricultural practices. The user can, for the same crop and the same climatological station, choose different planning dates. This is useful for the study of different cropping patterns and the calculation of scheme water supply schedules.

	ANTING DATE
Climate File : kurn- Crop File : r-grondn C	nor Cl. Station : KURNOOL rop Name : GROUNDNUT
For ETcrop calcu	lations give PLANTING DATE
Planting month (1-	t2) : 11 (November)
Planting day (1-30)	: 20
Harmond an	1 10 March

5.3 Crop water requirements results

5.3.1 CWR calculations

The calculation of crop water requirements is carried out per decade. For reasons of simplicity all months are taken to have 30 days, subdivided into 3 decades of 10 days. ETo and Peff values are determined as indicated in section 4.1.

The crop factor, Kc, is determined for each decade following the procedure as shown in Figure 1 and Annex 1. Values in the initial and midseason stages are constant as given in crop data input. Values in the development stage and late season stage are calculated by linear interpolation. The average daily crop evapotranspiration (ETcrop) is determined according to:

Crop evapotranspiration per decade is calculated by multiplication of the number of effective crop days. This will normally be 10, except in the first and last decade when planting date and harvest date do not necessarily coincide with the beginning or end of the decade.

Irrigation requirements (In) are determined by:

calculated similarly to ETcrop, as average per day and decade as well as for the total season.

5.3.2 Output and print of CWR

The results of the calculations are presented in table form on screen.

Cli Cre	mate F	ile :	kurn-nor GROUNI	CI DNUT PL	imate Stati inting Date	on : KU : : 20 !	RNOOL November	
Month	Dec	Stage	Coeff Ke	ETerop mm/day	ETerop mm/dec	Eff.Rain mm/dec	1RReq. mm/day	tRReg. mm/dec
Nov	3	init	0.40	1.42	14.2	3.6	1.06	10.6
Dec	1	init	0.40	1.38	t3.8	2.t	t.t7	tt.7
Dec	2	deve	0.50	1.68	t6.8	0.5	1.63	16.3
Dec	3	deve	0.70	2.46	24.6	0.4	2.42	24.2
Jan	1	deve	0.90	3.30	33.0	0.2	3.28	32.8
Jan	2	mid	1.00	3.82	38.2	0.0	3.82	38.2
Jan	3	mid	t.00	4.16	41.6	0.4	4.13	41.3
Feb	1	mid	1.00	4.5t	45.1	0.7	4.44	44.4
Feb	2	mi/lt	0.97	4.70	47.0	1.1	4.60	46.0
Feb	3	late	0.88	4.56	45.6	0.9	4.48	44.8
Mar	t	late	0.76	4.20	42.0	0.7	4.t3	4t.3
TOTAL.					362.0	t0.5		351.5

The output of Crop Water Requirement can be sent to printer or printfile:

Do you want a PRINTOUT of the data output (Y/N) : Y

5.3.3 Saving of CWR

The saving of the crop water requirements is needed when scheme water supply calculations (option 4 Main Menu CROPWAT, see chapter 8) or irrigation scheduling (option 3 Main Menu CROPWAT) are to be carried out. The results of the CWR calculations can therefore be saved on a so-called field field (#:ED).

Save Irrigation Requirement data as FIELD-File on disk for FUTURE calculations on SCHEME WATER REQUIREMENTS : Y

Any name can be given to the field file, but as crop water requirements are specific to the planting data, the crop type and the climate, the name of the field file should preferably provide an adequate reference to crop, climate and planting date in order to allow easy identification. The following 3-digit codification of the field files is therefore proposed:

- 1. Scheme code: 2 characters or digits e.g. scheme name RAJOLIBANDA: code RA or R-
- A climatic data code can be given if calculations are to be carried out for different types of climatic data, e.g. for average, wet or dry years a one-letter code can be used while for historical data of a certain year at two digit code can be used, such as:

SAVE ETCrop & IRR.REQ

Climate file	:	KURN-AV	Climatic station	:	KURNOOL
Crop file	:	GRONDNUT	Plant date	:	1 November

To save the calculated crop water requirement data for the given planting date, give an identifiable file name. Notations such as RA-GN112 may be used for <u>GROUNDNUTS</u> planted 2nd decade of <u>MOYEMBER (11)</u> using <u>Average</u> climatic data of the <u>Rajolbanda</u> project.

> Give the FILE-NAME : ? RA-GN112 (max 8 characters; without extension !!)

average data:	Α	wet year:	W
dry year:	D	actual data 1986:	86 or 6

3. Crop code: 2 characters or digits

nitalia. AL Dallalla. DA Caubage.	CA.
Citrus: CI Cotton: CT Grape:	GP
Groundnut: GN Maize: MZ Melon:	ML
Olive: OL Onion: ON Pea:	PE
Pepper: PP Pineapple: PA Potato:	PO
Rice: RC Sunflower: SF Sorghum:	so
Soybean: SY Sugarbeet: SB Sugarcane:	SC
Sunflower: SU Tobacco: TB Tomato:	TΜ
Watermelon: WM Wheat: WH	

4. Planting date: 3 digits e.g. Month: Jan - Dec: 01 - 12 Decade: I - 3

Examples of field files for a certain cropping pattern may be as follows:

Project:	Rajolibanda		
Climatic Data:	Normal Data		
Cropping Pattern:	Crop	Pl. Date	Field-File
	Rice	1 July	RN-RC071
	Rice	10 July	RN-RC072
	Rice	20 July	RN-RC073
	Cotton	15 June	RN-CT062
	Sorghum	15 June	RN-SO062
	Groundnut	1 November	RN-GN111
	Groundnut	1 December	RN-GN121
	Maize	10 November	RN-MZ112

The automatic sorting will conveniently group identical files together.

5.4 Program continuation

Several options exist at this stage to continue the program:
- Proceed with the calculated irrigation requirement of the concerned crop to the irrigation scheduling program.
- Calculate crop water requirements for the same crop and climatic data set but for another planting date.
- Calculate crop water requirements for the same climatic data set but for another crop and another planting date.
- Take another climatic data set and restart crop water requirement calculations for a new crop and new planting date.
- 5. Return to main menu.

	CONTINUE CALCULATIONS
Climate File Crop file	: kurn-nor Cl. Station : KURNOOL : r-grondn Plant date : 20 November
To conti	inue the program you have the following Options:
1. Proceed	to irr. scheduling of GROUNDNUT
2 Dealers	PLANTING date of GROUNDNUT
2. REVISE	d Chon
3. Take an	nother CKUP
 Revise Take and Take N 	EW set of CLIMATIC data
 Revise Take an Take N Return 	to MAIN MENU

Reference is made to the concerned chapters for continuation of the program.

6. RICE WATER REQUIREMENTS

The calculation of the irrigation requirements of wetland rice is different from other field crops, Extra irrigation water is required for only to cover evaporation losses but also to compensate for the percolation losses in the humdated fields, Furthermore, prior to transplanting, substantial irrigation water is required for the land preparation and the nursery. I putt and calculation procedures will therefore differ from those of other crops for which a separate program is included in CROPWAT.

The rice program is called up automatically whenever the crop name (both for new data input and for input from disk) RICE or PADDY is given. Also names like R-Rice or T-Pady referring to specific project crop files and names like RICERABI or PADDY2 are accepted and will call up the rice program. REDRICE and ARICE however will be conceived as normal field crops.

6.1 Input of rice data from keyboard

Data input required for rice include:

Crop : RICE		
Growth period	Length stage	Crop coefficient
Nursery	30 days	1.20
Land preparation	20 days	
Initial stage (A)	20 days	1.00
Development stage (B)	30 days	-
Mid season (C)	40 days	1.05
Late season (D)	30 days	0.80
Total	150 days	
Nursery area	10 %	
Land preparation	180 mm	
Percolation rate	1.5 mm/day	
	Any modifications (Y/N) : A	v

 Length of 6 growth stages: Normally upland crops will have 4 growth stages. In wetland rice this is extended to 6 stages to include the nursery and land preparation periods (see Fig. 2).

The length of the different stages is defined as follows:

- Length of nursery period: number of nursery days starting from land preparation nursery area to transplanting of rice.
- Length of land preparation: number of days required to carry out land preparation and inundation prior to transplantation for given irrigation unit. Normally land preparation will fall within the nursery period.

 Lengths of initial period (A), development stage (B), mid-season (C) and late season (D) are defined similarly to those for field crops.

- Crop factors (Kc): each of the 6 growth stages will be allocated a crop factor. As rice is permanently inundated, the crop factor represents values for the combined effect of crop transpiration and open water evaporation. Values will vary from 1.0 to 1.2. In late season a lower value (0.9) can be taken to account for the drying out of the soil profile.
- Nursery area: the area covered by the rice nurseries will occupy only a fraction of the total area. Crop water requirements will be proportionally reduced. An input is therefore required of the area covered by the nursery area as a percentage of total cultivated area.
- 4. Land preparation depth: for land preparation and invadation a considerable amount of irrigation water is normally required, normally given in two irrigations. A first application to bring the soil to saturation (+1-100 to 150 mm), after which pudding and land cultivation are carried out. Prior to transplanting, a second irrigation for inundation of a water layer to 100 mm is effected.

The total irrigation requirements for land preparation amount to 200-300 mm. This high momentary irrigation requirement for innudation and land preparation for a given rice area is spread over the land preparation period by rotating irrigation supply over the field. ds. A longer land preparation period will result therefore in lower daily irrigation requirements.

5. Percolation rate: depending on soil type and groundwater levels, the inundated rice fields will have a continuous water percolation to the deeper layers. This percolation process is favourable for plant growth as the water movement will keep oxygen content within the soil at a reasonable level.

Normal percolation rates are 1-3 mm/day, but rice fields on light soils and slopes may have as much as 10-20 mm/day.

6.2 Saving of rice data

After input or modification of the rice data the user can SAVE the input of rice data:

Do you want to SAVE data on DISK (Y/N) : Y

To be able to retrieve the rice data afterwards and run the rice program, the name of the rice file should contain the words RICE or PADDY.

The rice water requirements sub program is automatically called up when the file name begins with 'RICE' or 'PADD' or when the name starts with a two letter code and then 'RICE' or 'PADD': Names like C-RICE, RICE2 or PADDY are allowed. A name such as REDRICE will be considered as a field crop and the data input will be incorrectly stored.

6.3 Retrieval of rice data from disk

Selection of RICE or PADDY files can be made from the previously saved file, and is called up from the CROP input menu, as has been explained in section 5.2.2. The file name containing RICE or PADD will automatically call up the rice program.

6.4 Date of transplanting

The procedures for input of the transplanting data are as shown in the following screen print.

TRANSPLANTING DATE

Climate file : kurn-nor Crop file : rice Crop name : RICE

```
For ET-rice calculations give DATE of TRANSplanting:
```

```
Month of TRANS-Plant (1-12) : July
Day of TRANS-Plant (1-30) : 20
Date of nursery preparation : 20 June
Date of harvest : 20 November
```

```
Any changes in the Planting Date (Y/N) : N
```

6.5 Rice irrigation calculations

Rice irrigation requirements include the combined effect of evapotranspiration and percolation and the requirements for land preparation and nursery before transplanting.

Evaportanspiration and percolation occur as soon as the fields are inundated. During the nursery period ETo and percolation are accounted for only over that area covered by the nursery. During the land preparation this area increases daily with more land being inundated until the area is fully covered at transplanting. The area factor in the printout shows the average area coverage over the 10-day period.

Figure 2 illustrates the calculation procedures for rice irrigation requirements during nursery and land preparation periods and after transplanting.

6.6 Rice irrigation output

Results of the rice irrigation requirements are presented on screen and if desired on the printer. An example of the results is given below.

Climate Crop Effective	: kurn-nor : RICE Rainfall : 80%			S	Station Date of Transplant		: KURNOOL : 20 July				
Month	Dec	Stage	Area %	Coeff	ETcrop mm/day	Perc. mm/dy	LPrep mm/day	RiceRq mm/day	EffRain mm/dec	IRReq. mm/day	IRReq mm/dec
June	3	NUR	0.10	1.20	0.77	0.2	1.8	2.7	2.1	2.51	25.1
Jul	1	1.P	0.33	1.15	2.23	0.5	8.1	10.8	7.5	10.07	100.7
Jul	2	LP	0.78	1.15	4.52	1.2	8.1	13.8	19,6	11.02	118,2
Jul	3	A	1.00	1,00	5.54	1.5	0.0	7.0	25.6	4,48	44.8
Aug	1	A	1.00	1.00	5.55	1.5	0.0	7.1	25.9	4,47	44.7
Aug	2	в	1.00	1.01	5.55	1.5	0.0	7.0	26.1	4.43	44.3
Aug	3	В	1.00	1.03	5.44	1.5	0.0	6.9	27.6	4.18	41.8
Sep	1	в	1.00	1.04	5.32	1.5	0.0	6.8	29.6	3.85	38.6
Sep	2	С	1.00	1,05	5.16	1.5	0.0	6.7	31.4	3.52	35.2
Sep	3	C	1.00	1.05	4.93	1.5	0.0	6.4	28.8	3.55	35.5
Oct	1	С	1.00	1.05	4.70	1.5	0.0	6.2	26.8	3.52	35.2
Oct	2	С	1.00	1.05	4.47	1.5	0.0	6.0	24.5	3.53	35.3
Oct	3	D	1.00	1.01	4.09	1.3	0,0	5.3	18.4	3.50	35.0
Nov	1	D	1.00	0.92	3.56	0.9	0.0	4.4	11.6	3.28	32.8
Nov	2	Ð	1.00	0.84	3.06	0.4	0.0	3.5	5.1	2.99	29.9

A printout of the rice requirements can be made by answering Y(es) to the next question:

Do you want PRINT OUT of the RICE-requirements (Y/N) : Y

Rice irrigation requirements can be SAVED as a field file for scheme water requirement calculations:

Save future requirement data as FIELD-File on disk for FUTURE calculations on SCHEME WATER REQUIREMENTS ? : Y

For the naming of the rice field file reference is made to section 5.3.3

6.7 Program continuation

As in chapter 5, the program con be continued with a revision of the planting date, the crop or climate.

NOTE: The present CROPWAT version does not yet include an option for irrigation scheduling of wetland rice.

7. IRRIGATION SCHEDULING

The irrigation scheduling program cannot be addressed directly from the main program, but is reached after completion of the crop water requirement calculations (option 2, Main Menu):

	CONTINUE CALCULATIONS
Climate File Crop file	: KURN-NOR CL Station : KURNOOL : GRONDNUT Plant date : 20 November
To (-> 1. Proc 2. Revise 1 3. Take ar 4. Take N	continue the program you have the following Options: eed to irr, scheduling of GROUNDNUT FLANTING date of GROUNDNUT oother CROP EW set of CLIMATIC data
5. Return	to MAIN MENU
	Give your option (1-5) ; 1

The irrigation scheduling program provides the possibility to:

- develop and plan indicative irrigation schedules adapted to field operational conditions;
- evaluate field irrigation programs in terms of efficiency of water use and yield production;
- simulate field irrigation programs under water deficiency conditions, rainfed conditions, supplementary irrigation, etc.

7.1 Data input for irrigation scheduling

The calculation of the irrigation schedules is based on the water balance in which on a daily basis, the incoming and outgoing water flow (evaporation, rain, irrigation) in the rootcone of the soil profile is being monitored. For the calculations, data on crop evapotranspiration, rainfall, crop and soil are required:

7.1.1 Crop water requirements

The crop water requirements, defined as the daily water needs of crops, have been calculated previously from climatic data (ETO) and crop data (Kc, length of growth stages). They represent the daily uptake of soil moisture from the root zone due to evaportanspiration of the crop.

7.1.2 Rainfall

Rainfall data are included at the input of climate data. Depending on the objective of the irrigation scheduling calculations, the rainfall data given concern:

monthly averages

- rainfall with a 80% (dry) or 20% (wet) probability of exceedance, representing respectively a dry or wet year
- historical or actual data.

7.1.3 Crop data

The crop data required for irrigation scheduling concern the data on rooting depth and allowable depletion which allow the calculation of the readily available soil moisture content in the rootzone (RAM). Furthermore, to assess the effect of water stress on yield, the yield response factor is required.

The input of the crop data has been carried out earlier (chapter 5.2).

7.1.4 Soil data

The soil parameters important for irrigation scheduling are :

INPUT SOIL DAT	·A	
For scheduling ENTER your so	oil data:	
From keyboard From diskette	1 2	
Back to Start-up CROPWAT	3	
Your choice : 2		

 Total Available Soil Moisture Content (TAM), defined as the difference in soil moisture content between field capacity and withing point. It represents the ultimate amount of water available to the crop and depends on texture, structure and organic matter content of the soil, expressed in mm/meter. Indicative values for different texture class are:

	Coarse	Sandy	Loamy	Clayey
ГАМ	60	100	140	180 mm/m

- Initial Soit Moditure Depletion (\$ TAM), indicating the dryness of the soil at the start of the growing season. The initial soil moisture is expressed as a depletion percentage from field capacity. Default value of 0 % represents a fully wetted soil profile, 100 % is a soil at witting point. In most cases only an estimate can be made of the initial soil moisture condition, depending on previous crop and periods of a preceding fallow or dry season period.
- Maximum Rooting Depth, although in most cases the genetic characteristics of the crop will
 determine the rooting depth, in some cases the soil and certain disturbing soil layers may restrict the maximum soil depth. Default value is set arbitrarily on 900 cm, indicating no soil
 depth limitation.
- Maximum Rain Infiltration Rate, to allow an estimate of the surface runoff for the effective rain calculation, the maximum rain infiltration rate expressed in mm/day, can be set, limiting the maximum amount of rain which can infiltrate the soil on any one day, as a function of rain intensity, soil type and slope class. Default value is set at 30 mm/day.

Data input can concern new data or previously saved data. The procedure to input new data or to retrieve data saved earlier is similar to that for climate and crop data.

INPUT SOIL DAT	A
Soil type description (max. 15 char.)	: sandy loam
Total Available Soil Moisture (mm/m)	: 140 mm/metre
Maximum Rain Infiltration Rate	: 40 mm/day
Maximum Rooting Depth	: 900 centimetres
Initial Soil Moisture Depletion (% TAM)	: 40 percent
Any changes in Input Soil Date	a (Y/N) : N

In the case of new soil data, the soil type description should be given. The different soil data files on disk, saved in earlier sessions, will be shown on screen from which a choice can be made:

RETRIEVE SOIL DATA						
The follow	ing file	es are on t	he dat	a disk:		
BLCKCLAY HEAVY NEDIUN	501. 501. 501.	COARSE LIGHT REDCLAY	SOL SOL SOL	DOARSTEX LOAN SAMDLOAN	501. 501. 501.	FINETEX SOL NEDITEX SOL
					* = =	
Please	enter	your file 1	ame (without ext	ensio	1 !) : ? sandloam

7.2 Irrigation scheduling options

The irrigation scheduling program allows a range of options, depending on the specific application the user is aiming at and the conditions and restrictions the field irrigation system imposes.

The scheduling option refers to two different categories:

- 1. Timing Options related to WHEN irrigation is to be applied.
- 2. Application Options HOW MUCH water is to be given per irrigation turn.

7.2.1 Timing options

The user can select the following irrigation TIMING OPTIONS, determining when an irrigation is to be given:

Objective	Timing Option
EVAL. & SIMUL.	1. Each irrigation defined by user
OPTIMAL IRRIGATION	 Irrigation at CRITICAL depletion (100% RAM) Irr. below or above critical depl. (% RAM)
PRACTICAL IRRIG.	 Irrigation at fixed intervals per stage Irrigation at fixed depletion (mm)
DEFICIT IRRIGATION	 Irrigation at given ETcrop reduction (%) Irrigation at given YIELD reduction (%)
RAINFED	8. No irrigation, only rainfall
RAINFED	8. No irrigation, only rainfall 0. Revise data input

For EVALUATION AND SIMULATION:

<u>Option.1</u> Irrigation turns are defined by the user and can be either historical irrigation dates from actual field data or simulated dates. This option is used to evaluate irrigation practices, to simulate any alternative irrigation schedule and in particulate to refine the programming of irrigation schedules, developed in other options. The input of the individual dates is carried out as shown in the screen print.

INPU	T INDIVIDUAL IRRIGATIONS
Irrigation dates defin	ed by user
Type 0 (zero) to term	inate the input
Application no 1:	Days after planting: 20 Application Depth (mm): 40
Application no 2:	Days after planting: 40 Application Depth (mm): 40
Application no 3:	Days after planting: 50 Application Depth (mm): 50
Application no 4:	Days after planting: 70 Application Depth (mm): 50
Application no 5:	Days after planting: 85 Application Depth (mm): 50
Application no 6:	Days after planting: 0

For OPTIMAL IRRIGATION, where no restrictions are set on timing and availability of water supply:

<u>Option 2</u> Irrigation water applied whenever the critical soil moisture level is reached and readily available soil moisture is depleted, defined as 100% RAM. The classical way to determine irrigation schedules, resulting in minimum irrigations, but irregular and therefore unpractical irrigation intervals.

Irrigation at 100% Depletion of Readily Available Soil Moisture

<u>Option 3</u> Irrigation water applied whenever a certain soll moisture level is reached defined as percentage of RAM. Useful to set a safety level above critical soil moisture (for instance 80% RAM) or to allow a certain stress level (for instance 120% RAM).

Fixed % of RAM on which irrigation is required (%) ? 80

For **PRACTICAL IRRIGATION** where the scheduling is adjusted to the field irrigation method and the water supply conditions:

<u>Option 4</u> Irrigation water applied on fixed interval turns, suitable in particular in a gravity system with rotational water distribution as found in a majority of irrigation schemes. Although it may result in some over-irrigation in the initial stages and under-irrigation in the peak season, the fixed irrigation turns have great operational advantages.

> Interval length stage A (days) : 10 stage B (days) : 10 stage C (days) : 7 stage D (days) : 10

<u>Option 5</u> Irrigation water applied whenever a predetermined amount of water has been depleted, suitable in particular to adjust the irrigation schedule to the field irrigation method, and a fixed water application is given in each irrigation turn.

Give fixed depletion in mm : ? 40

For DEFICIT IRRIGATION, where in view of shortages of water supply we aim at restricting water supply while minimizing yield reductions:

Option 6 Irrigation water applied whenever a critical reduction in evapotranspiration is reached, predetermined by user for each stage in percentage of the reduction in evaporation:

Deficit = 100 * (1-ETa/ETmax),

where ETa = actual evapotranspiration

ETc reduction stage A (%) : ? 10 stage B (%) : 10 stage C (%) : ? 0 stage D (%) : 10

<u>Option 7</u> Irrigation water applied whenever a critical yield reduction level is reached, determined by sensitivity of concerned growing stage, according to:

(1 - Ya / Ymax) = Ky * (1 - ETa / ETmax)

where Ya = actual yield and Ymax = maximum yield Ky = Yield response factor

Give yield deficit level (%) : ? 10

Option § Rainfed. No irrigation is applied, only the monthly rainfall as given in the climatic data is considered, spread regularly over the month, in six rainfall showers. The printout gives a 10-day overview on deficit, evapotranspiration and rainfall losses.

7.2.2 Application option

Similarly the user must select one of the following irrigation application options:

Objective	Application Option
EVAL. & SIMUL.	1. Each irrigation depth defined by user
OPTIMAL IRRIG.	2. Refill soil to FIELD CAPACITY
	3. Refill below or above field capacity
PRACTICAL IRRIG.	4. Irrigation depth fixed acc. irr. method

For EVALUATION AND SIMULATION:

<u>Option 1</u> Application depth is specified by user for each irrigation turn as determined from field data or simulated data. The input of irrigation depth is carried out in combination with Timing Option 1, as shown on page 38:

Return to timing menu option 1 to define each irrigation depth!

For OPTIMAL IRRIGATION:

- <u>Option 2</u> The application depth will bring soil moisture content back to field capacity, thus equal to the depleted soil moisture in the root zone. As the depletion in the root zone will normally vary over the growing season with changing root depth and allowable depletion levels, the application gifts may vary substantially over the season.
- <u>Option 3</u> The application depth will bring soil moisture content back to a fixed amount above or below field capacity. Useful to allow for leaching for salinity control (application larger than field capacity) or to accommodate possible rainfall (application below field capacity).

Give Irrigation depth (+) or (-) mm from field capacity : ? 20

For PRACTICAL IRRIGATION, where application is restricted by one or more conditions set by the irrigation system:

<u>Option 4</u> Application depth is fixed by the user, and normally adapted to the irrigation method, Predominant condition in most gravity systems, where irrigation depths allow little variation; in addition fixed irrigation depth offers considerable operational advantages.

Give fixed irrigation depth (mm) ? 40

Fixed Irrigation Depth:Indicative values for different irrigation methods are given below:

Surface irrigation:	basin irrigation furrow irrigation border irrigation	:	50 - 150 mm 30 - 60 mm 40 - 80 mm
Sprinkler irrigation Drip irrigation	: 30 - 80 mm : 10 - 30 mm		

7.2.3 Field irrigation efficiency

The application depth concerns the net irrigation depth, the amount of water effectively infiltrated in the root zone. Inadequacies in the irrigation system and in particular in the field layout (poor land levelling, poor practices) will cause losses. To account for these system losses, the program allows an input on the estimated irrigation efficiency.

A default value of 70% is recommended for normal well-managed gravity irrigation methods.

Estimate field application efficiency (%) ? 70

NOTE: A distinction should be made between the 'scheduling' efficiency, which is calculated in the water balance as water lost due to deep percolation and is a consequence of inadequate scheduling, and the system irrigation efficiency estimated on the basis of inadequacies in the field irrigation system.

41

7.3 Irrigation scheduling calculations

The calculation of the scheduling program is based on a soil water balance, where the soil moisture status is determined based on a daily accounting of all ingoing and outgoing water in the root zone, according to:

 where:
 SMDi
 = soil moisture depletion at day i

 ETa
 = actual crop evapotranspiration

 P_{tot}
 = effective rainfall

 Irr. Appl.
 = irrigation depth

 RO
 = runoff

 DP
 = deep percolation

Figure 3 illustrates graphically the soil water balance over the growing season.

The budget calculation in CROPWAT assumes a soil moisture content at field capacity at planting, unless modified in the soil input file (see 7.1.4).

Rainfail data are given as monthly values and the programs converts the monthly values into 10dially values (see CWR calculations). For the water balance calculation, total rainfall is taken and rainfall applications are simulated by two applications for each decade on day 3 and day 7 of half the 10 daily rainfall. To reach rainfall an account is key of which part of the trainfall has been lost by runoff determined by the maximum rain infiftration rate (see input soil data 7.1.4) and the deep percolation determined by the solitorate default in the root zone.

Actual evapotranspiration will be equal to the calculated crop evapotranspiration as long as soil moisture content has not reached the critical level as given by the allowable depletion (p). Beyond this level actual crop evapotranspiration will be reduced proportionally to soil moisture depletion as illustrated in Figure 4.

Figure 4 Actual evapotranspiration with decreasing soil moisture content

Values for total and readily available soil moisture, as determined by root depth, allowable depletion and total available soil moisture, are calculated on a daily basis.

Furthermore, by summation of daily values, an account is kept of actual and potential evapotranspiration for each growing stage and the total growing period.

Timing and application of irrigation are incorporated in the calculation as determined by the user.

For the final output accounts are kept on the number of irrigations, interval periods and irrigation losses and yield reductions due to stress as presented in Output.

Gross irrigation application depth is determined from given irrigation efficiency and converted into a permanent field supply in l/sec/ha over the irrigation interval period.

7.4 Irrigation scheduling output

The results of the scheduling calculations are presented on the screen and can subsequently be printed on a connected printer or to a disk file.

The output includes information on the irrigation calendar, the total water use and production and allows evaluations of the scheduling efficiency.

IRRIGATION SCHEDULING GROUNDNUT 20 November Climate Station : KURNOOL Climate File : kurn-nor Crop : GROUNDNUT Planting date : 20 November Soil : sandy loam Available Soil moisture : 140 mm/m Initial Soil moisture : 84 mm/m Irrigation Options selected:

Timing : Fixed Interval of 10 (A) / 10 (B) / 10 (C) / 10 (D) days Application : Fixed Irrigation Depth of 40 mm

Field Application Efficiency 70 %

No. Irr.	lot days	Date	Stage	Deplet %	TX %	ETA %	Net Depth mm	Deficit mm	Lots mas	Gr. Depth mm	Flow L/s/ha
1	10	1 Dec	Α	56	85	94	40.0	0.0	0.0	57.1	0.66
2	10	10 Dec	A	21	100	100	40.0	0.0	15.4	57.1	0.66
3	10	20 Dec	в	19	100	100	40.0	0.0	23.9	57.1	0,66
4	10	1 Jun	в	25	100	100	40.0	0.0	15.9	\$7.1	0.66
5	10	10 Jan	B	29	100	100	40,0	0.0	7.2	\$7.1	0.66
6	10	20 Jan	C	34	100	100	40.0	0.0	1.8	57.1	0.66
7	10	1 Feb	C	37	100	100	40.0	1.2	0.0	57.1	0.66
8	10	10 Feb	с	41	100	100	40.0	5.4	0.0	\$7.1	0.66
9	10	20 Feb	D	46	100	100	40.0	11.1	0.0	57.1	0.66
10	10	1 Mar	D	50	100	100	40.0	15.6	0.0	\$7.1	0,66
11	10	10 Mar	D	51	100	100	40.0	16.7	0.0	57.1	0.66
END	1	11 Mar	D	15	100	0					

7.4.1 Irrigation calendar

General information on the data used includes:

- details on crop, planting date and soil data
- timing and application criteria selected.

For each irrigation event an account of:

- number of the irrigation turn (No. Irr.)
- interval period (Int)

44

- DATE of irrigation turn (Date)
- crop STAGE in which irrigation turn occurs (Stage):
 - A: initial phase
 - B: development stage
 - C: mid-season
 - D: late season
- depletion level (Depl) as percentage of total available soil moisture (TAM)
- actual evapotranspiration rate (TX) on the day before irrigation, expressed as percentage of potential crop evapotranspiration

- average actual evapotranspiration (ETa) calculated over the irrigation interval period, and expressed as percentage of potential crop evapotranspiration
- deficit (Deficit), indicates the soil moisture depletion level after irrigation:
 - ... a zero value represents a refill to field capacity;
 - ... a positive value represents an under-irrigation, equal to the amount needed to refill the root zone to field capacity
- loss (Loss) the excess water lost to deep percolation of any irrigation depth or rain exceeding refill to field capacity.
- net and gross irrigation depths as defined by application option (Net Depth and Gross Depth)
- the gross depth converted into a permanent flow (Flow), representing a continuous discharge to satisfy irrigation requirements over the concerned interval period.

7.4.2 Total water use and yield reductions

The output is concluded with a presentation of total water use and yield reductions as shown in the printout.

Total Irrigation Losses Moist Deficit at harvest	440.0 mm 64.1 mm 16.7 mm	Effe	octive Rain al Rain Lo	n 13.3 ass 0.0	mm mm		
Actual Water Use by Crop Potential Water Use by Crop	361.1 mm 362.0 mm	Act	ual Irrig.	Req. 348.	6 mm		
Efficiency 1rr. Schedule Deficiency Irr. Schedule	85.4 % 0.2 %	Effi	ciency Ra	in 100.	0 %		
VIELD REDUCTIONS	Stage	A	в	С	D	Season	_
Reductions in ETC Yield Response factor		3.1 0.40	0.0	0.0	0.0	0.2	%
Reductions in Yield		1.2	0.0	0.0	0.0	0.2	%
Cumulative Yield reduct.		1.2	1.2	1.2	1.2		%

i. The efficiency of the irrigation supply can be evaluated from:

- total net and gross irrigation supply
- total net irrigation losses as sum of excess irrigation applications; these do not account for the irrigation efficiency defined in input (see chapter 7.2.4)
- soil moisture deficit at harvest, representing the soil moisture depletion at the end of the season, a check if the last irrigation was really required or could be possibly suppressed

- total net supply + soil retention, representing the total water use by the crop plus possible water losses
- total net water use of the crop
- potential total irrigation requirement, which is equal to the earlier calculated total crop water requirements minus effective rainfall
- efficiency of supplied irrigation water, which is expressed as the ratio water use crop over net supply
- deficiency of the irrigation supply, which is a measure of crop water stress determined as
 ratio actual crop water use over potential crop water use.
- ii. Reductions in yield due to soil moisture stress are indicated per season and per growing stage:
 - if no stress occurred table will be suppressed
 - reductions in Evapotranspiration are calculated for each growing stage and over the total growing season, expressed as percentage of potential crop evapotranspiration.
 - reductions in Yield are expressed in two ways:
 - ... for each growth stage separately according to:

... cumulative yield reduction where each yield reduction for a given stage is carried over to the next stage according to:

The yield reduction values will only provide an indication of possible yield reductions and it will be up to the user to interpret the actual accuracy of the values based on his experience.

- iii. The efficiency of rainfall can be evaluated from the information on:
 - total rainfall

46

- rain losses as determined from rainfall exceeding refill capacity of the soil (deep percolation) and rainfall exceeding the maximum daily infiltration rate (runoff losses)
- effective rain as total rain losses
- rain efficiency as percentage of the ratio effective and total rainfall. The evaluation of the rainfall efficiency provides a way to establish effective rainfall correlations (see section 5.1.3).

7.4.3 Evaluation of the irrigation schedule

The efficiency of the irrigation schedule can be judged in particular from:

- i. Efficiency of supplied irrigation water
- ii. Yield reduction due to moisture stress.

The user has to evaluate the different efficiency factors and compare these to the set timing and application options. By varying the options and input parameters, better efficiencies can possibly be achieved.

Normally a number of runs is necessary before a satisfactory irrigation schedule can be found. A typical sequence will be:

- 1. Optimal irrigation scheduling with timing option 100% RAM and application to field capacity.
- Practical irrigation scheduling with timing option fixed interval, for instance 10 days or 7 days and an application option set at fixed irrigation depth as determined by the irrigation method. Several intervals and applications may be tried.

The output shows a pattern which is typical of many field irrigation systems: an over irrigation in the early season and an under irrigation during mid season, leading to mild stress. This is also illustrated in Figure 2.

Simulated schedule where further refinements can be applied by varying timing and applications over the growing season.

7.5 Program continuation

To continue, a new scheduling option can be chosen, or the data set in use can be renewed. If modifications in the data set are required, option 0 (zero) from the irrigation timing menu has to be selected. The following options are available to revise the data:

- 1. A new soil type to be used for the soil water balance calculations for same crop and climate
- 2. Revision of certain soil parameters such as the initial soil moisture content
- Revise planting date of crop used. A recalculation of the CWR will follow after which soil data have to be re-entered.
- Revise crop input: a completely new crop can be taken or certain crop parameters can be modified.
- 5. Revise climatic data set: will bring user back to climate data input from where either another climate file can be called up or a new data set can be typed in. To return to the scheduling program, crop data, planting date and soli data will have to re-entered.
- 6. Return to scheduling options for revision of timing or application options.
- 7. Return to Main Menu.

	DATA	REVISION	
Climate File Crop File	: kurn-nor : grondnut	Soil Type Plant date	: sandy loam : 20 November
To continue th	he program you	have the follo	wing options:
1. Take anoth	her Soil		
2. Revise Soil	data		
3. Revise Pla	nting date		
4. Revise Cro	p input		
5. Take NEW	set of CLIMAT	ffC data	
6. Return to	Scheduling Opti-	ons	
7. Return to	Main Menu		
	Cine room	antion (1 7) .	7

8. SCHEME WATER SUPPLY

The calculation of scheme water supply can be made by choosing option 4 in the Main Menu:

	MAIN MENU CROPWAT (5.7)
	PROGRAM OPTIONS:
->	ET0 Pennan-Monteilt calculations Crop water requirements To The standard stand Standard standard stand Standard standard stan
	9. Exit CROPWAT
	Your Option 4

The purpose of this program element is to determine the monthly irrigation water supply for an irrigation scheme where, on varying areas and for different planting dates, several irrigated crops are grown.

8.1 Data input

8.1.1 Crop Irrigation requirements

In proceeding program sessions the crop irrigation requirements have been determined and, if considered suitable for the scheme water supply, have been saved as field files with an adequate reference to crop, climate and planting date.

For the scheme irrigation requirements, a field file is successively called up, for each crop and planting date, from the list of displayed field files.

8.1.2 Cropped area

The area covered by each crop should be given as a percentage of the total scheme area.

An overview of the cropping pattern with the different cropped areas, planting dates and other information is shown in the screen overleaf.

Care should be taken that at any given moment the sum of individual crops does not exceed total scheme area. A check on this is provided by summarizing essential crop irrigation data.

			CROPPIN	G PA	TTE	RN			
	Project :	Climat	ic Station	: }	URN	OOL			
No.	CROP	Area %	Plant. date	llar de	rest	ETCrop	EffRain	S.Eff. %	Yld. Red. %
1	COTTON	20	0 2	1	8	597.4	294.0	100	0
2	GROUNDNUT/K	30	15 8	15	8	361.7	248.0	100	0
3	PADDY	25	20 7	20	7	671.7	347.3	100	0
4	PARDY	25	10 8	10	8	626,5	298_2	100	0
5	GROUNDNUT/R	30	15 12	15	12	393.6	8.3	100	0
6	GROUNDNUT/R	30	0 1	1	1	428.9	11.6	100	0
7	PADDY	15	10 12	10	12	628.5	13.3	100	0
8	PADDY	15	20 12	20	12	660.7	13.6	100	0

8.2 Calculations

The I0-day values on crop irrigation requirements, derived from the different field files, are converted into monthly values. Multiplication of the individual crop irrigation requirements by the area percentage, give 'relative' irrigation requirements, expressed in mulday. Summation of these values for all crops gives the scheme water requirements and scheme water supply which can be converted into U/Sna and I/s researcively.

By taking into account irrigation efficiencies and rotational criteria the gross scheme water supply requirements can be determined according to:

 $Q_{grad} = \frac{1}{\epsilon_s} \cdot \frac{1}{t_s} \cdot A_{grades} \cdot 0.116 \cdot \sum (ET_{orag} - P_{gr}) \cdot \frac{A_{orag}}{A_{stars}}$

where:	Qgross	= gross scheme water supply (l/s)
	ep	= scheme irrigation efficiency (≤ 1)
	Ľ,	= operational time factor (≤ 1)
	Acrop	= area covered by individual crop
	Ascheme	= total scheme area
	ETerop - Peff	= net crop irrigation requirement

Summarizing (E) for all crops.

8.3 Output

- A printout is given of selected cropping pattern with crop names, area coverage, planting date and summarized crop irrigation data as shown.
- Results of net irrigation requirements are presented in table form on the screen as shown with monthly values on:
 - crop irrigation requirements
 - net scheme irrigation requirements in mm/day, I/s/ha and I/s
 - irrigated area as percentage of total scheme area
 - irrigation requirement in 1/s for actually irrigated area

A printout in monthly values can be made if desired, an example of which is given.

NOTE: Future versions of CROPWAT will include a printout of decade values and calculation of gross irrigation supply taking into account irrigation efficiency and the operational time factor.

rojec	t:	Cli	imatic S	Station	KUR!	KURNOOL							
No.	Jan	Feb	Mar	Apr	May	Jua	Jul	Aug	Sep	Oct	Nov	Dec	
1	2.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	1.7	3.3	3.5	
2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	1.6	2.6	0.7	
3	0.0	0.0	0.0	0.0	0.0	0.9	9.9	6.0	4.8	4.7	2,5	0.0	
4	0.0	0.0	0.0	0.0	0,0	0.0	4,2	8.3	4.9	4.9	5.3	1.2	
5	1.9	4.6	5.3	1.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.4	
6	0.9	3.9	5.7	3.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7	7.2	8.0	8.1	2.0	0,0	0.0	0.0	0,0	0.0	0.0	4.3	8.9	
8	7.2	8.0	8,8	4,5	0.0	0.0	0.0	0.0	0.0	0.0	0.8	10.2	
SQ	3.6	5.0	5.8	2.4	0.0	0.2	3.5	3.6	2.5	3.2	4.1	4.2	
SQ	107	149	174	72	0	7	106	107	75	96	124	126	
SQ	0.41	0.57	0,67	0.28	0.00	0.03	0.41	0,41	0.29	0_37	0.48	0,49	
Ar	110.0	90.0	90.0	45.0	0.0	8.3	41.7	50.0	66.7	100.0	106.7	88.3	
AQ	0.38	0.64	0.75	0.62	0.00	0.30	0.99	0.83	0.44	0.37	0.45	0.55	

SQ in mm/d SQ in mm/m SQ in ls/h AR in % AQ in ls/h

ANNEX 1

CROP CHARACTERISTICS

1. Length of crop development stages

2. Crop coefficients

3. Crop coefficients perennial crops:

Figure A.1	Alfalfa
Figure A.2	Citrus
Figure A.3	Deciduous fruit
Figure A.4	Banana

4. Soil water depletion fraction

- for various soil groups
- for various ETcrop ranges
- 5. Readily available soil moisture

6. Yield response factor

1. LENGTH OF CROP DEVELOPMENT STAGES OF SELECTED FIELD CROPS

Crop	Init.	Devel	Mid	Late	Total	Plant Date	Region
Artichoke	40	40	250	30	360	Apr (1 yr)	California
	20	40	220	30	310	May (2 yr)	(cut in May)
Beans	20	30	30	10	90	Feb/Mar	Calif., Mediterranean
(green)	15	25	25	10	75	Aug/Sep	Calif., Egypt, Lebanon
Beans (dry)	20	30	40	20	110	May/June	Continental Climates
	15	25	35/50	20	95	June	Pakistan, Calif.
Boets	15	25	20	10	70	Apr/May	Mediterranean
	25	30	25	10	90	Feb/Mar	Mediterranean & Arid
Carrots	20	30	50/30	20	100	Oct/Jan	Arid climate
	30	40	60	20	150	Feb/Mar	Mediterranean
Castor beans	25	40	65	50	180	March	(Semi)Arid Climates
Celery	25	40	95	20	180	Oct	(Semi)Arid
	25	40	45	15	125	April	Mediterranean
Cotton	30	50	60	55	195	Mar:Apr/May	Egypt: Pakistan
	30	50	60	55	195	Sept	Yemen
	30	50	55	45	180	April	Texas
Crucifers	20	30	20	10	80	April	Mediterranean
	25	35	25	10	95	February	Mediterranean
	30	35	90	40	195	Oct/Nov	Mediterranean
Cucumber	20	30	40	15	105	June/August	Arid Region
	25	35	50	20	130	Nov; Feb	Arid Region
Egg plant	30	40	40	20	130	October	Arid Region
	30	45	40	25	140	May/Junc	Mediterranean
Flax	25	35	50	40	150	April	Europe
	30	40	100	50	220	October	Arizona
Grains	20	30	60	40	150	April	Mediterranean
(small)	25	35	65	40	165	Oct/Nov	Pakistan; Arid Reg.
Groundnut	25	35	45	25	130	Dry season	West Africa
	35	45	35	25	140	May/June	Moditerranean
Lentil	20	30	60	40	150	April	Europe
	25	35	70	40	170	Oct/Nov	Arid Region
Lettuce	20	30	15	10	75	April	Mediterranean
	30	40	25	10	105	Nov/Jan	Mediterranean
	25	35	30	10	100	Oct/Nov	Arid Region
Maize (sweet)	20 20 20	20 25 30	30 25 50/30	10 10 10	80 80 90	March May/June Oct/Dec	Philippines Moditerranean Arid Climate
Maize (grain)	30 25 20 20 30	50 40 35 35 40	60 45 40 40 50	40 30 30 30 30	180 140 125 125 150	April Dec/Jan Junc October April	East Africa (alt.) Arid Climste Nigeria (humid) India (dry, cool) Spain (spring, sum.)
Melons	25	35	40	20	120	May	Mediterranean
	30	45	65	20	160	Dec/Jan	Arid Region
Millet	15	25	40	25	105	June	Pakistan
	20	30	55	35	140	April	Central USA

55

Crop	Init.	Devel	Mid	Late	Total	Plant Date	Region
Onion (dry)	15	25	70	40	150	April	Mediterranean
	20	35	110	45	210	October	Arid Region
Onion	25	30	10	5	70	April/May	Mediterranean
(green)	20	45	20	10	95	October	Arid Region
Peas	15	25	35	15	90	May	Europe
	20	30	35	15	100	March/April	Mediterranean
Peppers	25/30	35	40	20	125	April/June	Europe and Medit.
	30	40	110	30	210	October	Arid Region
Potato	25	30	30/45	30	115/130	Jan/Nov	(Semi)Arid Climate
	25	30	45	30	130	May	Continental Climate
	30+15	35	50	30	145	April	Europe
Radish	10	10	15	5	40	March/April	Medit.; Europe
	10	10	15	5	40	Winter	Arid Region
Safflower	20	35	45	25	125	April	California, USA
	35	55	60	40	190	Oct/Nov	Arid Region
Sorghum	20	35	40	30	130	May/June	USA, Pakis., Med.
	20	35	45	30	140	March/April	Arid Region
Soybcans	20	30/35	60	25	140	May	Central USA
	20	25	75	30	150	June	Japan
Spinach	20	20	25	5	70	Apr; Sep/Oct	Mediterranean
	20	30	40	10	100	November	Arid Region
Squash	20	30	30	20	100	March, Aug	Mediterranean
(pumpkin)	25	35	35	25	120	June	Europe
Squash	25	35	25	15	100	April	Medit.; Arid Reg.
(zuechini)	20	30	25	15	90	May/June	Medit.; Europe
Sugarbeet	45	75	80	30	230	November	Mediterranean
	25	35	50	50	160	May	Mediterranean
	35	60	70	40	205	November	Arid Regiona
Sunflower	25	35	45	25	130	April/May	Medit.; California
Tomato	30	40	40	25	135	January	Arid Region
	35	45	70	30	180	Oct/Nov	Arid Region
	30	40	45	30	145	April/May	Mediterranean
Wheat/ Barley	15 20 15	25 25 30	50 60 65	30 30 40	120 135 150	November March/April July	Central India 35-45 °L East Africa
Winter Wheat	30	140	40	30	240	November	Mediterranean

From FAO Irrigation and Drainage Paper 24, Table 22.

2. CROP COEFFICIENTS (Kc)

CROR	Creb microbaran magan										
CROF	Initial	Crop develop- ment	Mid- season	Late season	At harvest	period					
Banana											
tropical subtropical	0.4-0.5 0.5-0.65	0.7-0.85 0.8-0.9	1.0-1.1 1.0-1.2	0.9-1.0 1.0-1.15	0.75-0.85 1.0-1.15	0.7-0.8					
Bean			Auro								
green	0.3-0.4	0.65-0.75	0.95-1.05	0.9-0.95	0.85-0.95	0.85-0.9					
ary	0.3-0.4	0.7-0.8	1.05-1.4	0.65-0.75	0.25-0.3	0.7-0.8					
Cabbage	0.4-0.5	0.7-0.8	0.95-1.1	0.9-1.0	0.8-0.95	0.7-0.8					
Cotton	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.9	0.65-0.7	0.8-0.9					
Grape	0.35-0.55	0.6-0.8	0.7-0.9	0.6-0.8	0.55-0.7	0.55-0.75					
Groundaut	0.4-0.5	0.7-0.8	0.95-1.1	0.75-0.85	0.55-0.6	0.75-0.8					
Maize											
sweet	0.3-0.5	0.7-0.9	1.05-1.2	1.0-1.15	0.95-1.1	0.8-0.95					
gram	42-02+	0.7-0.85*	1.05-1.2*	0.8-0.95	0.35-0.6*	0.75-0.9*					
Onion	0406	07.08	0 95.1 1	0.55.0.9	0.75-0.85	05.0 9					
green	0.4-0.6	0.6-0.75	0.95-1.05	0.95-1.05	0.95-1.05	0.65-0.8					
Pea, fresh	0.4-0.5	0.7-0.85	1.05-1.2	1.0-1.15	0.95-1.1	0.8-0.95					
Pepper, fresh	0.3-0.4	0.6-0.75	0.95-1.1	0.85-1.0	0.8-0.9	0.7-0.8					
Potato	0.4-0.5	0.7-0.8	1.05-1.2	0.85-0.95	0.7-0.75	0.75-0.9					
Rice	1.1-1.15	1.1-1.5	1.1-1.3	0.95-1.05	0.95-1.05	1.05-1.2					
Safflower	0.3-0.4	0.7-0.8	1.05-1.2	0.65-0.7	0.2-0.25	0.65-0.7					
Sorghum	0.3-0.4	0.7-0.75	1.0-1.15	0.75-0.8	0.5-0.55	0.75-0.85					
Soybean	0.3-0.4	0.7-0.8	1.0-1.15	0.7-0.8	0.4-0.5	0.75-0.9					
Sugarbeet	0.4-0.5	0.75-0.85	1.05-1.2	0.9-1.0	0.6-0.7	0.8-0.9					
Sugarcane	0.4-0.5	0.7-1.0	1.0-1.3	0.75-0.8	0.5-0.6	0.85-1.05					
Sunflower	0.3-0.4	0.7-0.8	1.05-1.2	0.7-0.8	0.35-0.45	0.75-0.85					
Tobacco	0.3-0.4	0.7-0.8	1.0-1.2	0.9-1.0	0.75-0.85	0.85-0.95					
Tomate	0.4-0.5	0.7-0.8	1.05-1.25	0.8-0.95	0.6-0.65	0.75-0.9					
Watermelon	0.4-0.5	0.7-0.8	0.95-1.05	0.8-0.9	0.65-0.75	0.75-0.85					
Wheat	0.3-0.4	0.7-0.8	.05-1.2	0.65-0.75	0.2-0.25	0.8-0.9					
Alfelfa	0.3-0.4				1,05-1,2	0.85-1.05					
Citrus clean weeding no weed control						0.65-0.75					
Olive						0.4-0.6					

From FAO Irrigation and Drainage Paper 33, Table 18.

3. CROP COEFFICIENTS PERENNIAL CROPS

Figure A.1

Figure A.4

SOIL WATER DEPLETION FRACTION

4.

Group	Crops
1	onion, pepper, potato
2	banana, cabbage, grape, pea, tomato
3	alfalfa, bean, citrus, groundnut, pineapple, sunflower, water melon, wheat
4	cotton, maize. olive, safflower, sorghum, soybean, sugarbeet, sugarcane, tobacco

From FAO Irrigation and Drainage Paper 33, Table 19.

	SOIL	WATER D AND MAX	EPLETIO	N FRAC	TION (p) FOR (RATION	(ETm)	OPS	
Crop				ETa	n mm/da	ay			
Group	2	3	4	5	6	7	8	9	10
1	0.50	0.425	0.35	0.30	0.25	0.225	0.20	0.20	0.175
2	0.675	0.575	0.475	0,40	0.35	0.325	0.275	0.25	0.225
3	0.80	0.70	0.60	0.50	0.45	0.425	0.375	0.35	0.30
4	0.875	0.80	0,70	0.60	0.55	0.50	0.45	0.425	0.40

From FAO Irrigation and Drainage Paper 33, Table 20.

GENERALIZED DATA ON ROOTING DEPTH OF FULL GROWN CROPS, FRACTION OF AVAILABLE SOIL WATER (p) AND READILY AVAILABLE SOIL WATER (p.Sa) FOR DIFFERENT SOIL TYPES (in mm/m soil depth) WIIEN ETcrop is 5-6 mm/day

n n Attala 10.0.0 Bases 0.40.1 Bases 0.40.2 Bases 0.40.3 Bases 0.40.3 Bases 0.40.3 Crime 0.41.3 Crime 0.41.3 Crime 0.41.3 Crime 0.30.3 Schard 0.45.0 Graper 0.30.3 Marken 0.41.0 Marken 0.34.1 Marken 0.34.2 Parage 0.34.6 Reserver 0.34.6 Reserver 0.34.6 Reserver 0.34.6 Reserver 0.34.5 <th>action (p) of available</th> <th>Read</th> <th>Ely svailable soil water mm/m¹</th> <th>(p.Sa)</th>	action (p) of available	Read	Ely svailable soil water mm/m ¹	(p.Sa)
Abdis Basas 1.52.9 Basas 1.52.9 Barley 1.64.13 Cheng 0.64.0 Cheng 0.45.0 Cheng 0.45	soil water"	fine	ncéam	coarse
Basis 0.5.09 Basis 0.5.01 Brance 0.6.10 Chappe 0.6.10 Chappe 0.6.10 Chappe 0.6.10 Chappe 0.3.3.3 Cites 0.8.3.4 Conso 0.6.3.5 Conso 0.6.17 Data 0.5.13 Conso 0.6.17 Data 0.5.13 Conso 0.6.13 Conso 0.6.13 Conso 0.6.13 Conso 0.6.13 Conso 0.3.43 Conso 0.3.43 Conso 0.3.43 Conso 0.3.43 Conso 0.3.43 Conso 0.3.43 Subpe 0.3.44 Conso 0.3.45	0.55	110	75	35
Refng" 1-0-1.5 Refng" 1-0-1.5 Colleage 0-0-1.0 Colleage 0-0-1.0 Colleage 0-0-1.0 Colleage 0-0-1.0 Colleage 0-0-1.2 Colleage 0-0-1.2	0.35	70	50	20
base 0.5.7.7 Base 0.5.6.7 0.5.6.7 Base 0.5.6.8 0.5.6.9 Convo 0.5.6.9 Convo 0.5.6.9 Convo 0.5.6.9 Convo 0.5.6.9 Convo 0.5.6.9 Convo 0.5.7.2 Convo 0.5.7.2 Data 1.5.2.5 Data 1.5.2.5 Data 1.5.2.5 Data 1.5.2.5 Oranomatia 0.5.1.5 Summatia 0.5.1.5 Summatia 0.5.1.6 Oranomatia 0.5.1.6 Summatia 0.5.1.6 Summatia 0.5.1.6 Res 0.5.1.0 Re	0.55	110	75	35
locat 0.4-1.0 Statege 0.4-1.0 Statege 0.3-0.5 Char 0.3-1.0	0.45	90	65	30
Dibleg: 0.4.6.3 Chron; 0.4.0.3 Chron; 0.4.0.3 Chron; 0.4.0.3 Chron; 0.4.0.3 Chron; 0.4.0.4 Chron; 0.4.0.7 Chron; 0.4.0.7 Chron; 0.4.0.2 Chron; 0.4.0.2 Chron; 0.4.0.2 Chron; 0.4.1.2 Chron; 0.4.1.2 Chron; 0.4.1.2 Chron; 0.4.1.3 Chron; 0.4.1.3 Chron; 0.4.1.5 Chron; 0.4.1.5 Chron; 0.3.4.5 Chron; 0.3.4.5 Chron; 0.3.4.5 Chron; 0.3.4.5 Chron; 0.3.4.5 Chron; 0.4.1.0 Chron; 0.4.2.0 Chron; 0.4.2.0 Chron; 0.4.2.0 Chron; 0.4.2.0 Chron; 0.4.2.0 Chron; 0.4.2.0	0.5	100	70	35
Caroos 0.5-1.0 Caroos 0.5-1.0 Caroos 0.6-3.0 Dever 0.6-3.0 Dever 0.6-3.0 Dever 0.6-3.0 Dever 0.6-3.0 Dever 0.7-1.2 Dever 0.7-1.0 Dever 0.7-1.2 Dever 0.7-1.2 Dever 0.7-1.2 Dever 0.7-1.2 Dever 0.7-1.1 Name 0.7-1.1 Name 0.7-1.2 Dever 0.7-2.2 Dever	0.45	90	65	30
Charg 0.3.6.5 Charg 0.3.6.5 Char 0.4.4.5 Char 0.4.4.5 Char 0.4.4.5 Char 0.4.5 Char 0	0.35	70	50	20
Theme 1.3-15 Theorem 0.4.03 Theorem 0.4.17 Theorem 0.4.12 Theorem 0.4.12 Theorem 0.4.20 Theorem 0.4.20 Theorem 0.4.20 Theorem 0.4.20 Theorem 0.4.20 Theorem 0.4.20 Theorem 0.4.30 Theorem 0.4.30 Theorem 0.4.30 Theorem 0.4.31 Theorem 0.4.11 Theorem 0.4.12 Theorem 0.4.13 Theorem 0.4.20 Theorem 0.4.20 <t< td=""><td>0.2</td><td>40</td><td>25</td><td>10</td></t<>	0.2	40	25	10
Chove 0.6.9.9 Caroo 0.7.1.2 Date 0.7.1.2 Date 0.7.1.2 Date 1.5.3.5 Date 0.5.1.5 Date 0.5.1.5 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.3.5.5 Date 0.3.5.5 Date 0.3.5.6 Date 0.4.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 Date 0.5.1.0 </td <td>0.5</td> <td>100</td> <td>70</td> <td>30</td>	0.5	100	70	30
Date 52-10 Date 53-7 Date 15-3 Date 15-1 Date 15-1 Date 13-1 Date 13-2 Date 13-2 Date 13-2 Date 13-3 Date 13-3 Date 13-3 Date 13-3 Date </td <td>0.35</td> <td>70</td> <td>50</td> <td>20</td>	0.35	70	50	20
Dome 1.6.1.7 Downer 0.5.1.2 Downer 1.6.2.0 Stard 1.6.2.0 Stard 1.6.2.0 Stard 1.6.2.0 Stard 1.5.2.0 Jone 0.5.2.0 Jone 0.5.1.0 Jone 0.5.1.0 Jone 0.5.1.0 Jone 0.5.2.0	0.2	40	30	15
Double 0.7.1.2 Double hards 0.7.1.2 Date hards 1.6.1.3 Far2 1.6.1.3 Far2 1.6.1.3 Solar 1.8.2.0 Far2 1.6.1.3 Solar 1.8.2.0 Drive 0.5.1.3 Drive 0.3.2.3 Drive 0.3.2.3 Drive 0.3.2.4 Drive 0.3.2.4 Drive 0.3.2.6 Dri	0.65	130	90	40
bits 1.5-25 byte 1.5-25 byte 0.8-1.5 byte 1.3.1.8 byte 0.8-1.5 byte 1.3.2.8 byte 0.8-1.5 byte 0.8-1.5 byte 0.8-1.5 byte 0.8-1.5 byte 0.8-1.6 byte 0.8-1.7 byte 0.8-1.7 byte 0.8-1.7 byte 0.3-1.7 byte 0.3-1.6	0.5	100	70	30
Dec. ontands The control of the second seco	0.5	100	70	30
Far ² 1.0.1.5 Disk multi 0.9.1.5 Disk multi 0.9.1.5 Dires 0.9.1.7 Dires 0.3.1.7 Dires 0.3.2.5 Dires 0.3.2.6 Dires 0.3.2.5 Dires 0.3.2.5 Dires 0.3.1.5 Dires 0.3.1.5 Di	0.5	100	70	30
Trains math ² 0.84.5 start ² 0.84.5 start ² 0.84.5 Start 0.50.0 Train 0.51.0 Strandama 0.51.2 Strandama 0.51.2 Strandama 0.51.0 Strandama 0.51.0 Strandama 0.51.0 Strandama 0.51.0 Strandama 0.51.0 Strandama 0.51.0 <t< td=""><td>0.5</td><td>100</td><td>70</td><td>30</td></t<>	0.5	100	70	30
wiser ² 1.5.20 props 1.5.20 Drombins 0.5.10 market 0.3.63 Drombins 0.5.10 market 0.3.63 Market 0.3.63 Market 0.3.63 Market 0.4.10 Market 0.4.10 Market 0.4.10 Market 0.4.20 Market 0.4.13 Market 0.4.13 Market 0.4.13 Market 0.4.13 Market 0.4.13 Market 0.4.13 Mark <td>0.6</td> <td>120</td> <td>80</td> <td>40</td>	0.6	120	80	40
Direct 1.6-2.0 Directana 0.5-1.3 Directana 0.5-1.3 Directana 0.5-3.5 Marka 1.5-1.7 Baye 1.5-1.7 Directana 0.3-5.5 Nature 1.5-1.7 Directana 0.3-5.5 Nature 0.3-5.6 Propert 0.5-1.0 Respect 0.46.6 Directana 0.46.8 Directana 0.46.8 Directana 0.46.8 Directana 0.20.3 Directana 0.23.1 Directana 0.3.4.5 Directana 0.3.4.5	0.6	120	\$0	40
Drive 0.5-1.5 Consideration 0.5-1.0 Adalati 1.6-1.7 Adalation 1.6-1.7 Adalation 1.6-1.7 Adalation 1.3-1.7 Defension 0.3-0.5 Xinue 0.6-1.0 Marger 0.3-0.6 Adalation 0.5-1.0 Construction 0.3-0.6 Adalation 0.3-0.6 Marger 0.3-0.6 Adalation 0.3-0.6	0.35	70	50	20
Joundamus 0.5-1.0 minus 0.303 silige 1.0-1.7 silige 1.0-1.7 silige 1.0-1.7 Marce 1.3.3.1 Nations 0.3.1.1 Nations 0.3.0.8 Marces 0.4.0.9 Marces 0.4.0.6 Marces 0.4.1.3 Marces 0.4.1.3 Marces 0.4.1.3 Marces 0.4.1.3	0.5	100	70	30
attive 0.3.6.5 attage 1.6.1.7 datage 1.6.1.7 datage 1.6.1.7 datage 1.6.1.7 datage 1.6.1.7 datage 1.6.1.7 datage 0.3.1.1 that terms 0.3.1.1 that terms 0.3.6.4 that terms 0.3.6.4 that terms 0.3.6.4 that terms 0.3.6.4 that terms 0.3.6.3 prised 0.3.6.3 the terms 0.3.2.5 prised 0.3.2.5 the terms 0.3.4.5 the terms 0.3.4.5 the terms 0.3.4.5 the terms 0.3.4.5 that terms 0.3.4.5 that terms 0.3.4.5 that terms 0.3.4.5 that 0.3.4.5 that 0.3.4.5	0.4	80	55	25
Main2 1.0-1.7 Reper 1.0-1.5 Stream 1.0-1.5 Stream 1.0-1.7 Stream 0.0-1.0 Stream 0.0-1.0 <t< td=""><td>0.3</td><td>60</td><td>40</td><td>20</td></t<>	0.3	60	40	20
slage slage diates 1.5.1.3 diates 1.5.1.3 diates 1.5.1.7 biolog 0.3.6.5 biolog biol biol biol biol biol biol biol biol	0.6	120	80	40
Advise 1.0-1.5 Stress 1.3-3.1 Marce 0.3-1.1 Varian 0.3-1.1 Varian 0.3-1.1 Varian 0.3-1.1 Varian 0.3-1.0 Varian 0.3-0.4 Varian 0.3-0.5 Varian 0.3-0.5 Varian 0.3-0.5 Varian 0.3-0.5	0.5	100	70	30
Xivus 1.3.1.7 Nonemas 0.5.1.0 Nameras 0.5.1.0 Nameras 0.5.1.0 Nameras 0.5.1.0 Nameras 0.5.1.0 Nameras 0.4.6.6 Millower 0.5.2.0 Nameras 0.5.2.0 Nameras 0.5.2.0 Nameras 0.5.2.0 Nameras 0.5.2.0 Negation 0.3.6.3 Nameras 0.3.6.5 Nameras 0.3.6.5	0.35	70	50	25
Debine 0.365 Nature 0.311 Matter 0.510 Respect 0.364 Nature 0.464 Status 0.451 Status 0.453 Status 0.515 Status 0.324 Status 0.324 Status 0.324	0.65	130	95	45
Unit trans 0.7-1.1 Viat 0.41.0 Viat 0.41.0 Viatoria 0.41.0 Viatoria 0.41.0 Viatoria 0.42.6 Viatoria 0.42.6 Viatoria 0.42.0 Viatoria 0.42.0 Viatoria 0.42.0 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.2 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.42.1 Viatoria 0.41.5 Viatoria 0.74.5 Viatoria 0.32.6 Viatoria 0.32.6	0.25	50	35	15
Nat 0.6-1.0 Nymeric 0.3-1.0 Status 0.40.4 Natasa 0.42.0 Status 0.32.3 Status 0.51.0 Status 0.51.0 Status 0.51.0 Status 0.32.5 Mark 0.32.5 Mat 0.32.6	0.65	130	90	40
Papers 0.5-1.0 Rangels 0.5-0.6 Stangels 0.50.6 Influence 0.82.0 Stangels 0.82.0 Stangels 0.82.0 Stangels 0.82.0 Stangels 0.83.0 Stangels 0.30.3 Brancheric 0.20.3 Standers 0.41.3 Bandbourd 0.81.5 Bandbourd 0.81.5 Bandbourd 0.51.0 Descarage 0.51.0 Maxet 0.32.6 Most 0.32.6	0.35	70	50	25
Stangel 0.3.6.6 Stangel 0.3.6.6 Stangel 0.4.6.8 Stangel 0.4.6.8 Stangel 0.5.10 Stangel 0.5.20 Stangel 0.5.13 System 0.4.13 System 0.5.13 System 0.5.13 System 0.5.15 System 0.5.15 System 0.5.15 System 0.5.16 Stangerstangel 0.5.1.6 Stangerstangel 0.5.1.6 Stangerstangel 0.5.1.6 Stangerstangel 0.5.4.6 Stangerstangel 0.5.4.6 Stangerstangel 0.5.4.6 Stangerstangel 0.5.4.6	0.25	50	35	15
Natures 0.46.6 Stafforwr 0.5.20 Saff 0.5.10 Sinther 0.3.11 Spinsten 0.3.63 Binsberrin 0.7.12 Sparsten 0.7.13 Stafform 0.1.13 Stafform 0.1.13 Stafform 0.1.13 Stafform 0.3.6.5 Stafform 0.3.6.5 Stafform 0.3.6.5 Mathematic 0.7.4.5 Wata 0.3.6.6	0.5	100	65	30
alflowr* 1.6-2.0 Sight 0.5-1.0 1.6-2.0 Sophen 1.6-2.0 Syntam 0.343 Syntam 1.2-0 Suthward 0.3-1.5 Sware pactors 1.6-1.5 Stat Constant Oration 0.3-6.6 Motat 1.6-1.5	0.25	50	30	15
isiat 0.5.1.0 Styleam 0.6.1.0 Styleam 0.6.1.3 Immeberries 0.2.0.3 Bagerbeet 0.7.1.2 Superstance 0.4.1.3 Bandbower ² 0.4.1.5 Poster position 0.5.1.5 Poster position 0.5.1.5 Poster position 0.7.1.5 Wet 0.3.0.6 What 1.0.1.5	0.6	120	\$0	40
Stephenn 1.0.2.0 Stephenn 0.6-1.3 Spinsch 0.3.0.5 Stroberrise 0.2.0.3 Spinsch 0.3.0.5 Stroberrise 0.2.1.3 Sundowsr ² 0.8.1.5 Sweet positions 1.0.1.5 Sweet positions 0.5.1.0 Inte Constoen 0.7.4.5 Vegratulen 0.3.0.6 Meat Meat 1.0.4.5 5	0.8	155	110	50
Kopbean 0.6-1.1 Optach 0.3-0.5 Brawberries 0.2.0.3 Bagarteer 0.7-1.2 Bagarteer 0.8-1.5 Sweet positions 1.6-1.5 Folderson of the second of	0.55	110	75	35
lpinach 0.3.0.5 Rindbertie 0.2.0.3 lpartheet 0.7.1.2 lpartheet 0.7.1.2 lpartheet 0.7.1.2 lpartheet 0.7.1.2 lpartheet 0.7.1.2 lpartheet 0.7.1.5 rotatione 0.7.1.5 lpartheet 0.7.1.5 lpartheet 0.7.0.6 Meat 1.0.0.5	0.5	100	75	35
https://pii.com/site 0.2.0.3 https://water.com/site 0.7-1.2 https://water.com/site 1.2.2.0 https://water.com/site 0.4-1.5 https://water.com/site 0.4-1.5 https://water.com/site 0.7-1.5 https://water.com/site 0.3-0.6 https://water.com/site 0.3-0.6 https://water.com/site 1.6-1.5	0.2	40	30	15
higstheet 0.7-1.2 higstrand 1.2-2.0 hanflower ² 0.8-1.5 hones 1.0-1.5 Fobacco sarby 0.5-1.0 International 0.7-1.5 Pagetables 0.3-0.6 Hotat 1.0-1.5	0.15	30	20	10
Sugarcran ² 1.2-2.0 Sumflower ² 0.8-1.5 Sweet polatoes 1.0-1.5 Tobacco antly 0.5-1.0 late Tomatoes 0.7-1.5 Vegetables 0.3-0.6 Wheat 1.0-1.5	0.5	100	70	30
Numflower ² 0.8-1.5 Sweet polatoes 1.0-1.5 Tobacco aerly 0.5-1.0 late 0.7-1.5 /coratioes 0.7-1.5 /egetables 0.3-0.6 Mheat 1.0-1.5	0.65	130	90	40
Sweet polatoces 1.0-1.5 Tobacco early 0.5-1.0 ist 0 Tomatose 0.7-1.5 Vegetables 0.3-0.6 Wheat 1.0-1.5	0.45	90	60	30
Iste 0.5-1.0 Iste 0.7-1.5 forestore 0.7-1.5 forgetables 0.3-0.6 Wheat 1.0-1.5	0.65	130	90	40
late Fornatoes 0.7-1.5 /egctables 0.3-0.6 Wheat 1.0-1.5	0.35	70	50	25
Formatoes 0.7-1.5 Vegctables 0.3-0.6 Wheat 1.0-1.5	0.65	130	90	40
Vegetables 0.3-0.6 Wheat 1.0-1.5	0.4	180	60	25
Wheat 1.0-1.5	0.2	40	30	15
day to	0.55	105	70	35
npening	0.9	180	130	55

2

When ET_{crop} is 3 mm/day or smaller increase values by some 30%; when ET_{crop} is 8 mm/day or more reduce values by some 30%, saturating non-siline conditions (EC_n < 2 a8/m). Higher values that hose shown apply during rependent.

Sources: Taylor (1965), Stuart and Hagan (1972), Salter and Goode (1967), Rijtems (1965) and others.

From FAO Irrigation and Drainage Paper 24, Table 39.

YIELD RESPONSE FACTOR (ky)

	Ve	getative perio	d (II)	Flowering	Yield	Ripening	Total
Crop	earty (Ia)	late (1b)	total	(2)	formatioe (3)	(4)	period
Alfalfa			0.7-1.1				0.7-1.1
Banana							1,2-1,39
Beas			0.2	1.1	0.75	0.2	1.15
Cabbage	0.2			1	0.45	0.6	0.95
Citrus							0.8-1.1
Cotton			0.2	0.5		0.25	0.85
Grape							0.85
Groundmut		1	0.2	0.8	0.6	0.2	0.7
Maise			0.4	1.5	0.5	0.2	1.25
Onion			0.45		0.8	0.3	1.1
Pea	0.2			0.9	0.7	0.2	1.15
Pepper							1.1
Potato	0.45	0.5			0.7	0.2	1.1
Safflower		0.3		0.55	0.6		8.0
Sorghum			0.2	0.55	0.45	0.2	0.9
Soybean			0.2	0.5	1.0		0.85
Sugarbeet beet sugar							0.6-1.0 0.7-1.1
Segarcase			0.75		0.5	0.1	1.3
Sunflower	0.25	0.5		1.0	0.8		0.95
Tobacco	0.3	1.0				5	0.9
Tomato			0.4	1,1	8.0	0.4	1.05
Watermeion	0.45	0.7		0.8	0.8	0.3	1.1
Wheat winter			0.2	0.6	0.5		1.0
spring			0.2	9.65	0.55		1.15

From FAO Irrigation and Drainage Paper 33, Table 24.

6.

PART 2

GUIDELINES FOR CROPWAT

1. INTRODUCTION

The guidelines for using CROPWAT are meant as an example for design and management of irrigation schemes, taking the user, with the help of an actual data set, through the different steps required to calculate evapotranspiration and crop water requirements, starting with the collection and processing of input data to the application in scheme water supply and irrigation scheduling.

The guidelines are to be used in combination with the Manual of CROPWAT, which explains how to use the computer program and presents the underlying calculation procedures.

The example set used is taken from the Rajolibanda Diversion Scheme in Andhra Pradesh, India, one of the projects under the National Water Management Project proposed for rehabilitation and introduction of improved irrigation management practices.

2. CALCULATION OF REFERENCE EVAPOTRANSPIRATION

2.1 Introduction

The Reference Evapotranspiration, or ETo, represents the potential evaporation of a well-watered grass crop. The water needs of other crops are directly linked to this climatic parameter.

Several methods exist to determine the Reference Evapotranspiration, such as:

- Blaney-Criddle Method
- Penman Method
- Pan Evaporation Method.

The Penman-Monteith Method has been recommended as the appropriate combination method¹ to determine evapotranspiration from climatic data on:

- temperature
- humidity
- sunshine
- windspeed.

2.2 Data Collection

In order to calculate the reference evaportangination (ETo), the respective climatic data should be collected from the nearest and most prepresentative metorological stations. Several institutes and agencies may keep climatic records such as the irrigation Department, the Metorotological Service or nerby Agricultural Research Station and may provide information on climatic stations inside or in the vicinity of our irrigation scheme which should be considered for the crop water requirement calculations.

In some cases, when the scheme is large, more than one station may be available, but often no suitable stations with sufficient climatic data are located in the scheme. In such a case a careful selection should be made of the data. Figure 1 shows how an interpolation which may be carried out between stations outside and inside the irrigation scheme.

t

For further reference see Report of the Expert Consultation on Review of FAO Methodologies for Crop Water Requirement Calculations, held in May 1990 in Rome.

STATION		centachin	tala	Ę.	0.01	2	Ì	2. 2	2	2		2	- W - 0	8	INCLUCES.	1020	500	VIDOEN	VALIATION	EROM I	1 1041	1300	/	
Mund		Sucies					Air Tempe.	min					Hand	-	Control	I			Rein R	ND .			1	_
		1			1					Euro							Name of Street	¥7	11	a mag	11	21	11	_
			81	* 1	81	21	2 1	§ 2 \$	Hat	11	3	11	Reining Primates	1	2]	11		-	111	111	[×]	L		_
		1	ş	¥	۶	ş	Ŷ	۶	ų		ş			1	oline	airea	H			1			tra-A.	_
Inner		A (1001 A (1001	29.8	10.8	31.2	17.3	20.7	141	35.0	00 N	10.6	• 1	# R	51	22	68 SI	64	61	3.6 1948	•	85	- 10	5.0	_
Laboratory		1,590	33.6	6.61	ž	6.62	37.4	6.21	39.4	29 FE	8.C	- 9	8 1	8.7 HS	នង	87		3	40.9 [433	•	21.3	8	3	_
1		100	ā 7	ផង	37.5	ลื	6.15	C 61	ł	R 124	15.6	- 5	9 M	87 M1	สล	8 2	3	97	833 1944	•	78	n <u>R</u>	17	_
April	- 11	8786 8796	106	22	346	ž	415	ā	¥	яž	3	• 101	= 7	12 E	3.5	93	9.61	1	106.9 1037	•	1.08	яž	2	_
May		6.0% 6.9%	32.7	11	41.5	× R	41.1	512	63	= ž	2	9 SG	8 2	34	33	22	4	52	151.6	•	63	# <u>8</u>	10.4	_
į	- 11	4.100 4.100	28.0	22	37.8	62	10	ă	513	1 100	21.7	нž	a 9	***	23	22	7	8	8461 1940	1950 1950	101.4	ыğ	3	_
ż	- =	8-386	22	14	ž	5G	8.8	612	5.00	e 2581	5.12	нž	P 3	246	11	22	115.0	3	194, 5 1938	5.05 [943]	8.15	1631	51	_
Angel	- =	2,599	24	240	31.9	20.6	37.2	612	19.4	8 8	512	n 80	8.8	¥2	23	22	1118	2	8681 8681	4 (2 1980)	eruel	100	2	_
	- =	9 MA 2 9 MA 9	9.0	22	31.4	2	ž	12	2	n ž	22	ពន្លី	70	87	2 2	ងដ	18	a	1963	7 (g	154.9	R	62	_
Constee	- H	1 N N	10.0	¥2	52	ñ	8.0	8.61	34.1	1 26	59 1	n 🖁	82	23	92	22	8 FEZ I	9	8 CLT 6990	271.5 1961	18.2	s ž	2	_
ļ		0'864 L'1001	970	9 F F	10.1	\$ 61	202	13.5	174	9 1941	2	x 8	# R	83	93	28	47	2.8	111.55 [946]	•	1 A K	• ***	\$	
Į	- 8	3.0001 3.0001	21.4	18.1	20.9	34.8	ä	9 CI	34.4	1961	992	n Mai	64	22	22	8 I	51	0.7	77.45	•	٤đ	= 22	3.6	
liı	=	5.000 E.000	52 B	24	ξ,	ä	4.6	e 11	67		en l		89	22	20	z a	4717	4.7	1000 A	161	154.9		3	_
1!	#	88	88	88	n	8	я	n	R		R	-	nn	ุกก	88	8.8	R	n	n	R	R		R	-
Table 1											Examp	de of	climatolo	gical data	a record	-								

In our example, the data for the Rajolibanda Scheme have been obtained from the following sources:

Temperature:	IMS Station, Kurnool (1930-1960)
Sunshine hours:	Airport, Hyderabad
Humidity:	IMS Station, Kurnool
Wind:	IMS Station, Kurnool

The data, together with the calculated ETo, are presented in Table 2.

2.3 Data Conversion

In general, climatic data by the National Meteorological Service are standardized. An example of studa record is given in Table I for the Indian Meteorological Service (IMS), which contains all the necessary data or the impertature, humidity, samshine and wind for Pennan calculations. Normally some conversions are required in order to adjust the data into the format accepted by CROPWAT. In particular, attention should be given to the units in which the climatic records are given.

Figure 1

As an example, the following notes for conversion of the climatic data provided by the Indian Meteorological Service (IMS) to the units required for CROPWAT are given.

Temperature data

IMS		Mean Daily Maximum and Minimum Temperature
CROPWAT		Maximum and Minimum Temperature
Conversion	:	No conversion needed

Humidity data

IMS	:	Relative Humidity (in percent) as well as the Vapour Pressure both for morning and afternoon
CROPWAT	:	Average daily Relative Humidity or Vapour Pressure
Conversion	:	Average of morning and afternoon values of vapour pressure
Comments	:	Vapour pressure rather than Relative Humidity values are taken, as the latter relate to temperature values at sunrise and noon
Sunshine data		
IMS	:	Cloudiness in Oktas of sky of All and Low Clouds for morning and noon
CROPWAT	:	Sunshine hours (heliograph) or sunshine percentage
Conversion	:	According to the following relationship:

 $SSP = 0.95 - \frac{LCI + LC2}{2} + \alpha + \frac{ACI + AC2}{2}$

where:	SSP	=	sunshine rate (%)
	LC1	-	low clouds at sunrise (oktas)
	LC2	=	low clouds at noon (oktas)
	AC1	=	high clouds at sunrise (oktas)
	AC2	-	low clouds at noon (oktas)
	α	=	empirical parameter (≈ 0.3)

Windspeed data

IMS		Average Daily Windrun in km/hour
CROPWAT	:	Average Daily Windspeed in km/day or m/sec
Conversion	:	WS km/day = 24 x WS km/hour

2.4 Climatic Data Input

Input of the climatic data including the information on altitude and latitude of the climatic station are described in the Manual of CROPWAT, para. 4.1. Table 2 shows the data of Kurnool, used for the further calculations in our examples.

2.5 Climatic Data and ETo Output

A printout of calculated ETo results can be made with the connected printer as shown in Table 2.

2.6 Climatic and ETo Data Saving

After checking the data for possible errors, the data set can be SAVED for future use in the crop water requirement calculations (see para. 4.3 in CROPWAT). It is important to give an appropriate name to the data set which can easily be recognized later. In our example, the name KURNOOL, referring to the dimate station from which the data has been taken, was used.

Prior to exiting back to the CROPWAT input of rainfall data, you may wish to check the saved data by going back to the DATA INPUT MENU and retrieving the file, saved under the name KURNOOL.
Country : Altitude :	RAJOLIBANDA 281 meter		Meteo Coord	Station inates	: KURNOOL : 16.00 N.L.	
Month	AvgTemp	11umidity %	Windspeed km/day	Sunshine hours	Radiation MJ/m ² /day	ETo-PenMor mm/day
January	24.2	51	117	8.1	8.8	3.82
February	26.8	41	132	8.4	10.0	4.85
March	30.0	35	148	7.6	10.9	5.86
April	32.7	37	167	7.3	11.9	6,60
May	33.6	41	257	6.7	11.9	7.64
June	30.3	58	405	5.3	11.2	6.78
July	28.2	66	409	4.9	10.9	5.66
August	27.8	66	353	5.6	11.4	5.50
September	27.6	67	242	6.0	11.3	4.91
October	27.4	64	115	7.2	11.0	4,26
November	25.1	58	98	7.4	9,2	3,64
December	23.5	55	94	7.9	8,4	3.36
YEAR	28.1	53	211	6.9	10,6	1913

Reference Evapotranspiration ETo according Penman-Monteith

Table 2

Printout - Climatic data and ETo Kurnool

3. PROCESSING OF RAINFALL DATA

3.1 Introduction

The rainfall contributes to a greater or lesser extent in satisfying the crop water requirements. During the rainy season, a great part of the crop's water needs are covered by rainfall, while during the dry season, the major supply of water should come from irrigation. How much water is coming from rainfall and how much water should be covered by irrigation is, unfortunately, difficult to predict as yearly rainfall varies greatly.

In order to estimate the rainfall deficit for irrigation water requirements, a statistical analysis needs to be made from long-term rainfall records.

In addition to the variability of rainfall from year to year, not all rain which falls is also used by the crop. The intensity of rain may be such that part of the rainfall is lost due to surface runoff or due to deep perclation outside the rootzone.

In order to determine that part of the rainfall which effectively contributes to cover crop water requirements, a number of definitions are first given, while subsequently it is explained how the different rainfall values can be calculated and how they are incorporated in the crop water requirement calculations.

3.2 Rainfall Definitions

Average monthly rainfall:

Mathematically determined average for a series of rainfall records, most commonly available. To be used for CWR calculation to represent average climatic conditions.

Dependable rainfall:

The amount of rainfall which can be depended upon in 1 out of 4 or 5 years corresponding to a 75 or 80% probability of exceedance and representing a dry year. The dependable rainfall (80%) is used for the design of the irrigation system capacity.

Rainfall in wet, normal and dry years:

Defined as the rainfall with a respectively 20, 50 and 80% probability of exceedance, representing a wet, normal and dry year. The three values are useful for the programming of irrigation supply and simulation of irrigation management conditions. The rainfall in normal years (50% probability) is, in general, well approached by the average rainfall.

Historical or actual rainfall data:

The actual recorded rainfall used for evaluation purposes.

Effective rainfall:

Defined as that part of the rainfall which is effectively used by the crop after rainfall losses due to surface run off and deep percolation have been accounted for. The effective rainfall is the rainfall ultimately used to determine the irrigation requirement of the concerned crop.

3.3 Rain Data Collection

The precipitation data required for CROPWAT are monthly rainfall, commonly available from many climatic stations. In addition substations may be found with single rainfall records. For larger schemes, records of several rainfall stations may be available, allowing an analysis of the spatial variability.

To allow a calculation of rainfall probabilities, rainfall records from a range of years (15-30) are to be collected.

Rannal records of the Ralandanda Schenie are taken from Copus Camp and are presented in rante	Rainfall records of the R.	ajalibanda Scheme are taken	from Uppal Camp and ar	e presented in Table 3.
---	----------------------------	-----------------------------	------------------------	-------------------------

	'74	'75	'76	'77	178	'79	'80	'81	'82	'83	'84	'85	Ave
Jan	0	0	0	0	0	0	0	0	0	0	0	0	
Feb	0	0	0	0	13	45	0	0	0	0	0	0	5
Mar	0	0	0	0	0	0	0	13	0	0	0	13	2
Apr	0	0	8	13	38	0	20	20	0	0	15	14	10
May	69	8	33	70	87	t97	0	0	18	0	0	t06	45
Jun	44	89	48	140	103	118	74	56	180	0	66	29	75
յոլ	15	201	121	176	144	111	76	112	72	0	128	120	104
Aug	121	110	98	160	266	13	96	101	0	257	14	73	t 05
Sep	69	139	119	20	272	267	66	290	8	171	42	72	128
Oct	175	384	0	101	0	104	13	43	107	64	77	117	97
Nov	15	23	20	76	29	36	0	18	76	0	8	10	26
Dec	0	0	0	0	13	0	0	0	0	0	8	6	2
Tot	508	954	448	759	964	891	345	654	460	492	362	556	616

Table 3

Monthly rainfall data (1974-1985) Raingauge: Uppal Camp

Rain Data Processing 3.4

For programming of irrigation water supply and management, rainfall data of normal, wet and dry years are normally used.

An estimate of the respective rainfall data can be obtained by computing and plotting probabilities from the rainfall records. The different steps involved are:

- i. Tabulate yearly rainfall totals for a given period.
- ü. Arrange data in descending order of magnitude.
- iii. Tabulate plotting position according to:

$$Fa = 100 * m / (N + 1)$$

where:	N	=	number of records
	m	=	rank number
	Fa	-	plotting position

YEAR	'74	°75	*76	'77	°78	'79	'80	'81	'82	'83	'84	*85	
Rain Rank No	508 7	924 2	448 10	759 4	964 1	891 3	345 12	654 5	460 9	493 8	363 11	558 6	mm/year
Rank No Rain	964	2 924	3 891	4	5 654	6 559	7	8 493	9 460	10	11	12 345	mm/year
Fa	8	15	23	31	39	46	54	62	69	77	85	92	5

Table 4

Processing rainfall records (Uppal Camp)

iv. Plot values on log-normal probability paper, as shown in Figure 2.

Dependable Rain

Select year values at 20, 50 and 80% probability:

ν.

P80 = 405 mm P50 = 620 P20 = 860

vi. Determine monthly values for the dry year according to the following relationship:

$$P_{i_{dry}} = P_{i_{dry}} + \frac{P_{dry}}{P_{ar}}$$

where:	P _{i av}	-	average monthly rainfall for month i
	Pidry	=	monthly rainfall dry year for month i
	Pav	=	average yearly rainfall
	Pdry	-	yearly rainfall at 80% probability of exceedance

Similarly values for the wet year can be determined. Results are given in the following table.

	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Year
av	0	5	2	10	49	79	106	109	128	97	26	2	616
dry	0	3	1	7	32	52	70	72	84	65	17	2	405
wet	0	7	3	15	68	110	149	153	179	136	37	3	860

3.5 Effective Rainfall Method

To account for the losses due to runoff or percolation losses a choice can be made of one of the four methods given in CROPWAT.

In general, the efficiency of rainfall will decrease with increasing rainfall. For most rainfall values below 100 mm/month, the efficiency will be approximately 80%. It is therefore suggested to select Option 1 and give 80% as requested value.

In the water balance calculations included in the irrigation scheduling part of CROPWAT, a possibility exists to evaluate actual Efficiency values for different crops and soil conditions.

3.6 Rain Data Input

The input of rainfall data of the dry, normal and wet years for the CWR calculation with CROPWAT can be carried out as follows:

- i. Choose option 2 in Main Menu CROPWAT "CWR Calculations".
- ii. Choose option 3 in Input Menu "Climatic Data".
- iii. Choose option 2 in Input Menu ETo data.
- iv. Select ETo file of KURNOOL.
- v. Proceed to Rainfall Input.
- vi. Type rainfall data of concerned year and check input.
- vii. Choose effective rainfall method (option 1).
- viii. Check data and save data on diskette with appropriate name.

- ix. Return to input menu climate data by responding:
 - N(o) on CROPWAT question: "Revise Climatic Data"
 N(o) on CROPWAT question: "Revise Eff. Rainfall method"
- x. Continue with step i for input climatic data of Dry and Wet year.

3.7 Saving Climatic Data

The rainfall data together with the ETo data should be saved after input of one set of data is completed.

The naming of the file should adequately reflect the type of rainfall and ETo data.

In our case, the following files are saved:

KURN-AV:	for average ETo from Kurnool and average rainfall data
KURN-NOR:	for average ETo data from Kurnool and rainfall data in a normal year (50%)
KURN-WET:	for average ETo data and precipitation data of a year with rainfall of 20% probability of exceedance
KURN-DRY:	for average ETo data and precipitation data of a year with rainfall of 80% probability of exceedance

3.8 Printout of Climatic Data

Table 5 shows a printout of the average climatic data file of KURNOOL (KURN-AV). The climatic files of KURN-NOR, KURN-WET and KURN-DRY are included in Appendix 1.

Climate file	: kurn-av	Climate Stati	on : KURNOOL
	ETo (mm/day)	Rainfall (mm/month)	Eff. Rain (mm/month)
January	3.8	0.0	0.0
February	4.9	5.0	4.0
March	5.9	2.0	1.6
April	6.6	11.0	8.8
May	7.6	49.0	39.2
June	6.8	79.0	63.2
July	5.7	106.0	84.8
August	5.5	109.0	87.2
September	4.9	128.0	102.4
October	4.3	99.0	79.2
November	3.6	26.0	20.8
December	3.4	2.0	1.6
YEAR Total	1912.8	616.0	492.8 mm

Printout - Average climatic data Kurnool

4. CROPPING PATTERN AND CROP INFORMATION

4.1 Introduction

To determine the irrigation requirements of the Rajolibanda Diversion Scheme, an assessment should be made of the different crops grown under irrigation presently and possibly in the future. Furthermore, information on the various crop characteristics such as length of the growth cycle, crop factors, rooting depth, etc., should be collected.

4.2 Data Collection

A local survey should be carried out in the irrigation scheme to assess the crops grown rainfed as well as under irrigation. Through field observations, interviews with extension agents and farmers and additional information from other agencies, for instance a revenue department, an assessment can be made of the present cropping pattern.

Essential information collected from the field should include:

- 1. Crop and crop variety.
- 2. First and last planting date.
- 3. First and last harvesting date.

Additional information may include:

- Indicative yield level.
- 5. Indicative irrigation practices:
 - field irrigation methods
 - irrigation frequencies and interval
 - irrigation application depths.

From the Agricultural Research Station, more accurate information may be collected on:

- 6. Crop characteristics:
 - . length of individual growth stages
 - crop factors, relating crop evapotranspiration to grass evaporation
 - . rooting depth
 - allowable depletion levels
 - yield response factors.

4.3 Cropping Pattern

The collected information on the planting and harvest dates should be systematically arranged in a cropping pattern.

The planning date of crops, in particular those which cover substantial areas or are high in water demands such as rice, may be spread over a period of 3-5 weeks. In such cases the crop may be subdivided into different crop units with planning date intervals of 10-15 days.

Table 6 provides an example of the different crop information to be collected for each crop and crop type necessary for the data input in CROPWAT. Figure 3 illustrates a possible distribution of crops over the year and over the irrigated area.

Project	:	Rajolibanda	Climatic	Station : KUR	NOOL
No.	CROP		Area %	Planting dates	Harves dates
1	PADDY		13	10 July	10 Nov
2	PADDY		12	20 July	20 Not
3	PADDY		13	1 Aug	1 Dec
4	PADDY		12	10 Aug	10 Dec
5	PADDY		7	10 Dec	10 Apr
6	PADDY		6	20 Dec	20 Apr
7	PADDY		7	1 Jan	1 May
8	COTTON		15	1 Aug	1 Feb
9	GROUNDNUT		6	15 July	5 Nov
10	GROUNDNUT		7	1 Aug	20 Nov
11	GROUNDNUT		7	15 Aug	5 Dec
12	GROUNDNUT		20	15 Dec	5 Apr
13	GROUNDNUT		20	1 Jan	20 Apr
14	GROUNDNUT		20	15 Jan	5 May
15	SORGHUM		5	15 July	15 Nov
16	SORGHUM		5	1 Aug	1 Dec
17	SUGARCANE		5	t Jan	1 Jan

CROPPING PATTERN

Table 6

Printout - Cropping pattern

Figure 3

Cropping pattern

4.4 Crop Data Input

With the help of the data collected in the cropping pattern, the different crop files containing the necessary information for the CWR calculations can now be made. Insofar as the local data collected do not contain sufficient information on the different crop characteristics, the Tables in Annex 1 of the CROPWAT Manual may be consulted.

The sequence of steps for the Crop Data Input in CROPWAT (see chapter 5.2 of the Manual) is as follows:

- i. In Crop Data Input Menu choose Option 1 New Data Input.
- ii. Give crop name and crop type identification.

For instance Cropname: Paddy(Kharif), and type in the requested length of growth stage and crop factors for each development stage.

- Continue with data input for irrigation scheduling with inputs on rooting depth, allowable depletion and yield response factors.
- iv. If connected to printer, a printout can be made of the summarized crop data as shown in Tables 7 and 8 for paddy and groundnut:

RICE DATA INPUT									
Crop : PADDY Growth period		Length	Stage	Crop coefficient					
Nursery	(NUR)	30	days	1.20					
Land preparation	(LP)	20	days						
Initial Stage	(A)	20	days	1.10					
Developm, Stage	(B)	30	days						
Mid-season	(C)	40	days	1.05					
Late Season	(D)	30	days	0.80					
Total		150	days						
Nursery Area		10	%						
Land cultivation		180	mm						
Percolation rate		3.0	mm/day						

Tuble 7

Printout - Crop data Paddy

v. Make sure the data are adequately saved on the disk under an adequate and systematic file name convention, for instance:

for paddy in kharif season:

R-PADKH

for groundnuts in rabi season: R-GRNDNR

NOTE: file name can only be eight characters long and cannot contain any spaces, points or commas.

CROP DATA										
Crop : GROUNI	DNUT/RABI	Crop f	ile : grondnu	ıt						
Growth Stage		Init	Devel	Mid	Late	Total				
Crop Stage	[days]	20	30	35	25	110				
Crop Coefficient	[coeff.]	0.20	->	1.00	0.70					
Rooting Depth	[meter]	0.30	->	0.80	0.80					
Depletion level	[fract.]	0.50	->	0.50	0.50					
Yield-response F.	[coeff.]	0.40	0.60	1.00	0.80	0.80				

Table 8

Printout - Crop data Groundnut

vi. Proceed to data input of next crop by responding Y(es) to:

< Input of another crop (Y/N) : N >

which returns the program to the Crop Data Input Menu.

5. CROP WATER REQUIREMENT CALCULATIONS

5.1 File Input

Calculation of the crop water requirements can be carried out by calling up successively the appropriate climate data set, the various crop files and the corresponding planting dates.

In our Rajolibanda project the following sequence is followed:

Climate files:	1. KU	IRN-NOR - represe	nting nor	mal year
	2. KU	RN-DRY - represe	nting a d	ry year
	3. KU	JRN-WET - represe	nting a w	vet year
Crop files:	1. R-I	PADDYK - Kharif I	Paddy	
	2. R-1	PADDYR - Rabi Pa	ddy	
	3. R-0	COTTON - Kharif (Cotton	
	4. R-0	GRNDNK - Kharif	Groundn	uts
	5. R-0	GRNDNR - Rabi Gr	oundnut	s
	6. R-5	SORGHK - Kharif S	orghum	
	7. R-	SORGHR - Rabi So	rghum	
	8. R-3	SUGARC - Annual	Sugarcan	e
(Trans)planting	dates:	Paddy Kharif:	1.	10 July
			2.	20 July
			3.	1 Augus
			4.	10 Augus
		Rabi:	5.	10 Decen
			6.	20 Decen
			7.	1 Januar
		Cotton:	8.	1 Augus

ihi

Groundnut Kharif:	9.	15 July
	10.	1 August
	11.	15 August
	12.	15 December
	13.	1 January
	14.	15 January
Sorghum:	15.	15 July
	16.	1 August
Sugarcane:	17.	1 January
		(perennial)

For the input of the different files and the subsequent CWR calculations of each crop, the following steps are taken within the CROPWAT program:

- i. From the CROPWAT Main Menu Option 2 the CWR Calculation is called up.
- From the Climate Data Input Option 2 is chosen for input of the files from disk. The climatic data records are presented on screen and data can be checked and possibly modified.
- From the Crop Data Input Menu Option 2 "Input from Disk" is chosen, also here data are presented on screen to be checked and possibly modified.
- iv. For the input of the planting date the respective dates are given, the harvest date provides a check on the correct length of the growing season.

5.2 CWR Calculations

After input of the respective climate and crop files and planting dates, CROPWAT presents, in tabular form, the results of the calculations. A printout can be made of each of the CWR calculations as shown in Tables 9 and 10.

Month	Dec	Stage	Area %	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	1RReq mm/dy	1RReq mm/d
Jon	3	NUR	0,10	1.20	0.77	0.3	1.8	2.9	2.3	2.63	26.3
Jul	1	LP	0.33	1.18	2.28	1.0	8.1	11.4	8.4	10.51	105.1
Jul	2	LP	0.78	1.13	4.85	2.3	8.1	15.3	21.9	13.08	130.8
Jul	3	A	1.00	1.10	6.09	3.0	0.0	9.1	28.5	6,24	62.4
Aug	1	A	1.00	1.10	6.11	3.0	0.0	9.1	28.8	6.23	62.3
Aug	2	в	1.00	1.09	6.00	3.0	0.0	9.0	29.1	6.10	61.0
Aug	3	8	1.00	1.07	5,70	3.0	0.0	8,7	30.8	5.63	56,3
Sep	1	в	1.00	1.06	5.40	3.0	0.0	8.4	33.1	5.09	50.9
Sep	2	С	1.00	1.05	5.16	3.0	0.0	8.2	35.1	4,64	46.4
Sep	3	с	1.00	1.05	4.93	3.0	0.0	7.9	32.2	4.71	47.1
Oct	1	С	1,00	1.05	4.70	3.0	0.0	7.7	30.0	4,70	47.0
Oct	2	Ċ	1,00	1.05	4.47	3.0	0.0	1.5	27.4	4,73	47.3
Oct	3	D	1.00	1.03	4.09	2.5	0.0	6.6	20.6	4.53	45.3
Nov	1	n	1.00	0.92	3.56	1.8	0.0	5,3	13.1	4,00	40.0
Nov	2	n	1.00	0.84	3.06	0.9	0.0	3.9	5.9	3.35	33.5

Printout - Crop water requirements paddy (20 July)

Climate File : kuru-av Crop : GROUNDNUT			T/RAB1	Climate St Planting di	Climate Station : KURNOOL Planting date : 15 December						
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq. mm/der			
Dec	2	init	0,20	0.67	3.4	0.3	0.62	3.1			
Dec	3	init	0.20	0.70	7.0	0.4	0.67	6.7			
Jan	1	in/de	0.27	0.96	9.8	0.2	0.96	9,6			
Jan	2	deve	0.47	1.78	17.8	0.0	1.78	17.8			
Jan	3	dere	0.73	3.05	30.5	0.4	3.01	30.1			
Feb	1	de/mi	0.93	4.21	42.1	8.9	4.12	41.2			
Feb	2	mid	1.00	4.85	48.5	1.3	4,72	47.2			
Feb	3	mid	1.00	5.19	51.9	1.1	5.08	50.8			
Mar	1	mid	1.00	5.52	55.2	0.8	5.44	54,4			
Mar	2	late	0.94	5.51	55.1	0.5	5.46	54.6			
Mar	3	late	0.82	5.01	50.1	1.3	4.87	48.7			
Apr	1	late	0.70	4.45	12.2	1,1	4.23	21_2			

Printout - Crop water requirements Groundnut (15 December)

5.3 CWR Field Files

To allow the calculation of scheme irrigation requirements and to evaluate the effect of changes in the cropping pattern, each CWR calculation should be saved on a so-called "field file".

Each field file should receive an appropriate file name, chosen such that it is easily identified. As the CWR calculation is different for each climate, crop and planting date, naming of the files is somewhat complex and the following coefficiation is therefore proposed: (Reference: CRCPWAT 5.3.3).

1.	Scheme Identification:	1st letter code:
		R identifies the Rajolibanda scheme.
2.	Climate Type Ident:	2nd letter code:
		N, D, W identifies the climate type (normal, dry, wet, average).
3.	Crop Identification:	a 2-letter code
		PD = Paddy
		GN = Groundnut
		CT = Cotton
		SO = Sorghum
		SC = Sugarcane
4.	Planting Date:	3-letter code
		01-12: January - December
		1-3: 1st - 3rd decade

The automatic sorting of the data files which is invoked every time CROPWAT is exited will group the different field files according to Scheme, Climate and Crop together, which will facilitate the selection of the files, for scheme water requirements. A typical CWR field file is thus:

RN-PD072 for the CWR of a paddy crop (PD), planted in a normal year (N) in the Rajolibanda Scheme (R), planted in July (07), tenth (2nd decade). Below a printout of the different field files generated for our cropping pattern and alphabetically sorted is given:

Input Cropping Pattern Compose from field files the desired cropping pattern The following files are on the data disk: ------RH-CT081 FLD RH-GR011 FLD RW-GROB1 FLD RM-GR082 FLD RN-GR122 FLD RN-PD082 FLD RN-SG072 FLD RM-PD072 FLD RM-PD122 FLD RN-PD073 FLD RN-PD123 FLD RM-PD081 FLD RM-SC011 FLD RM-SG081 FLD Enter NAME of Field file No. 1 : rm-et081 Give area COTTON in % ? 20 Do you want to continue with next field file (Y/N) ? Y

Table 11

Input field files Rajolibanda for cropping pattern

5.4 Summary of CWR Calculations

A summary of the results of the different CWR calculation for our cropping pattern is given in the following table. Results of the individual calculations are given in Appendix 3.

	CROPPING PATTERN										
Projec	t : Rajolibanda	Climatic Station : KURNOOL									
No.	CROP	Area %	Plant. date	tlarvest date	ETCrop	EfRain	S.E.M. %	Yld.Red %			
1	PADDY	13	10 7	10 11	696.9	366.7	100	0			
2	PADDY	12	20 7	20 11	671.7	347.3	100	0			
3	PADDY	13	18	1 12	648,9	324.1	100	0			
4	PADDY	12	t0 8	10 12	626.5	298,2	100	0			
5	FADDY	7	10 12	10 4	628.5	13.3	100	0			
6	PADDY	6	20 12	20 4	660.7	13.6	100	0			
7	PADDY	7	1 1	15	863.4	17.5	100	0			
8	COTTON	15	18	12	597.4	294.0	100	0			
9	GROUNDNUT	6	15 7	5 11	530.1	288,8	100	0			
10	GROUNDNUT/	7	18	20 \$\$	385.8	286.4	100	0			
11	GROUNDNUT/	7	15 8	5 12	361.7	248.0	100	0			
12	GROUNDNUT/	20	15 12	54	393.6	8.3	100	0			
13	GROUNDNUT/	20	11	20 4	428.9	11.6	100	0			
14	GROUNDNUT	20	15 1	5 5	609.6	24.5	100	0			
15	SORGHUM	5	15 7	15 11	461.5	325,8	100	0			
16	SORGHUM	5	1.8	1 12	436.2	290.3	100	0			
17	SUGARCANE	5	11	11	1794.3	495.5	100	0			

Printout of crop water requirements

6. SCHEME AND CANAL WATER REQUIREMENTS

6.1 Calculation Procedures

The irrigation supply to any irrigation scheme or canal command area can be calculated by adding up the requirements of each crop area, as calculated and saved in our field files.

Any changes in cropping pattern can be conveniently calculated by modifying area size of the different field files.

				SCHE	ME IRI	RIGAT	ION R	EQUIF	REME	NTS			
Proje	at :					c	limatio	: Statio	n : K	URNO)L		
No	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
1	-					4.5	8,7	5.9	4.8	4.1	0.9		
2	-	-	-	-	-	0.9	9,9	6.0	4,8	4,7	2.5	-	
3	-	-	-	-	-	-	8.6	6.0	4,9	4.9	4.3	-	
4	-	-		-	-	-	4.2	8.3	4.9	4.9	5.3	1.2	
5	7.2	8,0	\$.1	2.0							4.3	8.9	
6	7.2	8.0	8.8	4.5	-	-	-	-	-		0.8	10.2	
7	8.0	9.3	10.6	8,7	2.8	-	-	-	-	-		9.1	
8	2.8			-	-			-	0.1	1.7	3.3	3.5	
9		-	-	-	-	-	6,7	1.7	3.0	2.5	0,7		
10									0.9	1.6	1.4		
11			-			-			0.2	1.6	2.6	0.7	
12	1.9	4.6	5.3	1.4	-	-	-	-	-	-		0.4	
13	0.9	3.9	5.7	3.4	-	-	-	-		-	-		
14	1.0	3.0	7.1	7.1	1.8	-	-	-	-	-	-	1.5	
15		-			-	-	-	0.4	1.9	1.9	0.9		
16			-	-		-	-		0.9	2.3	2.3	-	
17	3.7	4.5	5.5	5.9	5.9	4.3	2.6	2.2	1.3	1.5	2.7	3.2	
SQ	2.9	4.2	5.7	3.7	0.8	0.9	4.1	3.5	2.9	3.2	3.1	3.2	mm/d
SO	86	127	172	111	25	27	123	105	87	97	93	95	mes/as
SQ	0.33	0.49	0.66	0.43	0.10	0.10	0.48	0.41	0.34	0.37	0.36	0.37	h.h
Ar	100.3	85.3	85.3	7.82	13.9	17.5	54.8	64.3	85.3	100.0	86.3	80.1	5
40	0.33	0.58	0.78	0.73	0.70	0.59	0.97	0.61	0.10	0.17	0.41	0.46	1-D

Similarly, the irrigation supply for each canal unit can be determined.

Table 13

- Printout Scheme water requirements Rajolibanda
- SQ1 : Net irrigation supply (mm/day)
- SQ2 : Net irrigation supply (mm/month)
- SQ3 : Net irrigation supply (l/s/ha)

AR : Irrigated area (%)

AQ : Net irrigation supply for irrigated area (l/s/ha)

The scheme requirement calculations in CROPWAT are initiated from the main menu by selecting option 4 "Scheme Supply".

6.2 Field File Input

The input of the different field files should be made on the basis of the earlier determined cropping pattern and planting dates. Each crop planted will be allocated an area size according to the present or a proposed cropping pattern.

An overview of the cropping pattern with crops, area, planting and harvest dates and water requirements is provided in Table 12.

6.3 Scheme Water Requirements (SWR) Results

A printout of the scheme water requirements is shown in Table 13.

6.4 Evaluation of SWR Results

The results of the scheme water requirements for the given cropping pattern can now be compared with the available supply from the diversion at the anicut or reservoir.

Average monthly discharge of the Rajolibanda main canal (average over 1975-1985 period) is shown in the following table and compared with the calculated scheme requirements based on our schematic cropping pattern, and taking into account a 50% efficiency.

KHARIF								
	JUN	ЛL	AUG	SEP	OCT	NOV	TOTAL	
Actual Supply	5.8	26.3	35.4	36.2	39.6	38.5	181.8 MCM	
Net SWR	27.0	123.0	105.0	87.0	97.0	93.0	532.0 mm	
Irr. Eff.	50%	50%	50%	50%	50%	50%	5	
Gross SWR	54.0	246.0	216.0	174.0	194.0	186.0	1064.0 mm	
Irr. Area	19000	10000	10000	10000	10000	10000	BA	
Supply Req.	5.4	24.6	21.0	17.4	19,4	18.6	106,4 MCM	
Requir./Supply	93%	945	59%	485	49%	485	59%	

Table 14

The ratio estimated scheme requirements and actual supply (average of 10 years) gives some interesting information on efficiency of supply and may provide indications for further adjustments in the cropping pattern and scheme water supply.

RAB1									
	DEC	JAN	FEB	MAR	APR	MAY	TOTAL		
Actual Supply	35.4	34,9	31.2	35.8	30.0	1.1	168.4 MCM		
Net SWR	95.0	86.0	127.0	172.0	111.0	25.0	616.0 mm		
rr, Eff.	50%	50%	50%	50%	50%	50%	5		
From SWR	190.0	172,0	254.0	344.0	222.0	50.0	1232.0 mm		
irr. Area	10000	10000	10000	10000	10000	10000	HA		
Supply Req.	19.6	17.2	25.4	34.4	22.3	5.0	123.2 MCM		
Requir/Supply	54%	49%	\$15	96%	74%	455%	73%		

Table 15

Evaluation scheme water supply Rabi season

Evaluation scheme water supply Kharif season

7. IRRIGATION SCHEDULING

7.1 Introduction

An important element of CROPWAT is the irrigation scheduling program, which has several application possibilities:

- i. to develop indicative irrigation schedules:
 - for the agricultural extension service to promote better irrigation practices
 - for the irrigation service to establish improved rotational delivery schedules;
- to evaluate existing irrigation practices on water use efficiency and water stress conditions;
- to evaluate crop production under rainfed conditions, to assess feasibility of supplementary irrigation and to develop appropriate irrigation schedules;
- iv. to develop alternative water delivery schedules under restricted water supply conditions.

The calculations of the scheduling program are based on a soil water budget, where, on a daily basis, the soil moisture status is determined, accounting for all ingoing and outgoing water in the root zone.

We will see using our example from the Rajolibanda scheme how the different applications are worked out.

7.2 Data Input

The data required for the water balance equation are:

- Crop water requirements, as calculated from climatic data (ETo) and crop data (Kc, length of growth stages) representing uptake of water from the root zone by the crop;
- ii. Rainfall, provided with the input of climatic data;
- Crop data, rooting depth, allowable depletion and yield response factors as provided earlier with the input of crop data;
- Soil data, information on the total available soil moisture content is required for the water balance calculations.

7.2.1 Soil data collection

Information from the soil surveys carried out in the Rajolibanda area show two distinct soil categories:

- sandy loams, red loams and silty loams covering 21% of the command area, relatively shallow and free-draining, particularly suitable for upland crops;
- black clay soils, covering 77%, deep but poorly drained, suitable mainly for paddy and deep rooting crops like cotton.

No exact information on available soil moisture content of either of the two soils is available. A reasonable estimate seems:

- 140 mm/m for Red Sandy Loams

- 200 mm/m for Black Clay Soils

7.2.2 Soil data input

The soil information on available soil moisture content can accordingly be provided to the CROPWAT scheduling program and saved for later reference.

7.3 Irrigation Scheduling Applications

To illustrate the different applications of the scheduling program, we will subsequently work out four examples:

7.3.1 Development of indicative irrigation schedule

Objective:

To determine the irrigation water supply for a given crop in terms of frequency and irrigation depth, assuring optimal crop growth and efficient water use.

Conditions:

The irrigation schedule should meet the requirements of the field irrigation method practised and the operational criteria of the irrigation system (Warabandi). Furthermore, the validity of the schedule for different soil types and for variable rainfall conditions should be assessed.

Required data and information:

The essential information required for the development of an indicative schedule is given below for two crops:

۱.	Crop:	Groundnut
	Planting date:	1 November
	Climate:	Kurnool Normal, Wet and Dry Years
	Soil:	Red Sandy Loam (140 mm/m)
	Irrigation method:	Furrow irrigation
	Net application:	40-50 mm
	Irrigation supply:	Warabandi system with fixed rotational interval period
2.	Crop:	Cotton
	Planting date:	1 August
	Climate:	Kurnool Normal, Wet and Dry Years (ET, and Rain)
	Soil:	Black Clay Soil (200 mm/m)
	Irrigation method:	Basin irrigation
	Net application:	70-80 mm
	Irrigation supply:	Warabandi system with fixed rotational interval period

Scheduling procedures:

In order to develop the irrigation schedule which would fit our requirements, an interactive procedure is followed in which several runs are made with different timing and application options. Reference is made to chapter 7 of Part 1 which describes the input procedures.

The results of each run will be evaluated providing the information for the next option. A printout of each run is given in Appendix 4.1 with summarized results given in Table 17. An example of the printout of an irrigation schedule developed for groundant is given in Table 16. The different runs provide an indication of the criteria which are evaluated and used for the next run.

		IRRIGATION SCHEDULING	GROUNDNUT/RABI		15 December
	-				
limate Station		KURNOOL	Climate File		kurn-ar
100		GROUNDNUT/RABI	Planting date		15 December
lio		Red Sandy Loam	Available Soilmoist	:	140 mm/m
			Initial Salimoint		140 mm/m

Crop Soil

Irrigation Options selected : Timing Application : Dates defined by mer :/ 40 / 50 / 60 / 70 / 80 / 90 /100 : Fixed Irrigation depth of 45 mm

Field Application Efficiency 70%

No. Irr.	lint days	Date	Stage	Deplet %	TX S	ETA S	NetDep.	Deficit	Loss	GrDep.	Flow L/s/ha
1	40	25 Jan	в	53	100	100	45.0	7.0	0.0	64.3	0.19
2	10	5 Feb	в	38	100	100	45.0	0,0	2.6	64.3	0.74
3	10	15 Feb	с	39	100	100	45.0	0.0	1.1	64.3	0,74
4	10	25 Feb	ċ	43	100	100	45.0	3.7	0.0	64.3	0.74
5	10	5 Mar	с	50	100	100	45.0	11.1	0.0	64.3	0,74
6	10	15 Mar	D	58	93	99	45.0	20.0	0.0	64.3	0.74
7	10	25 Mar	D	62	82	97	45.0	25.0	0.0	64,3	0.74
END	11	6 Apr	D	62	83	97					
Total Gro	es Irrigat	ion	450.	a and a data		Total R	linfall.		10.	0 mm	
Fotal Net	Irrigation		315.	0 mm		Effectiv	e Rain		10.	D minus	
Total Irri	gation Lo	stes	3.7	-		Total R	ain Loss		0.0	1540	
Moist De	licit at has	rrest	69.1	-							
Net Suppi	ly + Soil	reteation	384.	l mm							
Actual W	ater use b	y crop	390.	4 mm		Actual I	rr.Reg		380	4 mm	
Potential	Water un	by crop	393.	6 m.m.							
Efficiency	Irr. Sche	dule	98.5	15		Efficien	cy Rain	100.05			
Deficienc	rr. Sch	edale	0.8	5							
VIELD R	EDUCTIO	ONS Stage		A		8	с	D	Sea		
Padantin	a in FTC							2.6			
Vield Re	in the for	lor				0.60	1.00	0.80	0.5	. ~	
Reduction	s in Yield			0.0		0.0	8.0	2.0	0.6		
Cumulat	ine Vield	traduct.		0.0		0.0		2.0	0.0	-	

Table 16

Printout - Selected irrigation schedule for groundnut

For groundnut, the following sequence of runs is made:

Run I

Timing Option:	(2) Irrigation at critical soil moisture content
Application Option:	(2) Refill to field capacity
Evaluation Criteria:	- Interval variance (16-11 days)
	- Application variance (49-60 mm)

Run 2

Timing Option:	(5) Irrigation after after fixed depletion soil moisture (40 mm)
Application Option:	(4) Refill of fixed application depth (40 mm)
Evaluation Criteria:	- Interval variance (13-7 days)

Run 3-5

Timing Option:	(4) Irrigation at various fixed intervals (7 days - 10 days)
Application Option:	(4) Refill of fixed application depth (40-45 mm)
Evaluation Criteria:	- Irrigation efficiency (61-72%)
	- Eventual yield reduction (0 - 10 - 2%)

Run 6

Timing Option:	(1) Each irrigation determined by user (40, 50, 60, 70, 80, 90, 100 days)
Application Option: Evaluation Criteria:	 (4) Refill at fixed application depth (45 mm) Irrigation efficiency (99%) Yield reduction (2%)

Run 7-8

The effect of the selected irrigation schedule on irrigation and rain efficiency and yield reduction is evaluated for varying soil type and rainfall (dry and wet years):

Timing Option:	(1) Each irrigation defined by user (40, 50, 70, 80, 90, 100
	uays)
Application Option:	(4) Fixed irrigation depth (45 mm)
Evaluation Criteria:	- Irrigation efficiency (98-99%)
	 Yield reduction (13-0%)

Rus	Timing Option	Applic. Option	Interval days	Applic. depth	Irrig. Turns	Irrig. Supply	Sched. Effic.	Yield Reduc.	Rain Effic
Average	Year (10 mm)	Red Sandy	Loam (140 m	m/m)		(
1	2	2	39-16-11	49-60	6	339	100%		95%
2	5	4	36-13-7	40	9	360	100%		100%
3	4	4	7	40	15	600	61%		89%
4	4	4	10	40	11	440	75%	10%	100%
5	4	4	10	45	11	495	72%	2%	100%
6	1	4	40-10	45	7	315	99%	2%	100 %
Average	Year (10 mm)	Red Sandy	(100 mm/m)						
7	1	4	40-10	45	7	315	98%	13%	100%
Average	Year (10 mm)	Red Loamy	(180 mm/m)						
8	1	4	40-10	45	7	315	99%	05	1005

Table 17

Summarized results scheduling runs for groundnut

A similar procedure can be followed for cotton, of which the results are shown in Table 18.

As rainfall is more substantial (average 367), the effect of precipitation for wet and dry years is evaluated in separate runs, as well as the effect of medium and light soils.

	Plantin	ug date 1 Aug	gust						
Run	Timing Option	Applic. Option	laterval days	Applic. depth (mm)	Irrig. Turas	Lrrig. Supply (mm)	Sched. Effic.	Yield Redut.	Rain Effic
Average Y	ear (367 ms	n) Black Cla	y Soil (200 ma	uim)					
1	2	2	130-51	171	1	171	100%		74%
2	5	4	103-23-28	90	4	320	100%	-	73%
3	4	4	100-20	80	5	400	70%	-	73%
4	4	4	100-20	70	5	350	80%	-	73%
5	1	4	106-20	70	4	280	97%	-	74%
o Average)	1 (ear (367 mm	4 a) Red Sand	106-20 y (100 mm/m)	/0		280	97%	-	95%
Average 3	1 (ear (367 mm	4 a) Red Sand 4	100-20 ly (100 mm/m) 100-20	70	4	280	97%		95%
Average Y 7 Dry Year	1 (ear (367 mm 1 (240 mm) 1	4 a) Red Sand 4 Rack Clay So	100-20 y (100 mm/m) 100-20 il (200 mm/m)	70	4	280	97%		95% 73%
Average Y 7 Dry Year 8	1 (ear (367 mm 1 (240 mm) 1 1	4 a) Red Sand 4 Hack Clay Sc 4	100-20 (100 mm/m) 100-20 d (200 mm/m) 100-20	70 70 70	4	280	97% 97% 100%		95% 73% 91%
6 Average Y 7 Dry Year 8 Wet Year	1 (ear (367 mm 1 (240 mm) 1 1 (513 mm) 1	4 a) Red Sand 4 Hack Clay So 4 Black Clay So	100-20 ly (100 mm/m) 100-20 ml (200 mm/m) 100-20 ml (200 mm/m)	70	4	280	97% 97% 100%		93% 73% 91%
Average 1 7 Dry Year 8 Wet Year 9	1 (ear (367 mm 1 (240 mm) 1 1 (513 mm) 1 1	4 a) Red Sand 4 Hack Clay So 4 Black Clay So 4	108-20 by (100 mm/m) 100-20 al (200 mm/m) 100-20 al (200 mm/m) 100-20	70 70 70 70 70	4	280	974 974 1005		95% 73% 91%

Table 18

Summarized results scheduling runs for cotton

7.3.2 Evaluation of irrigation practices

Objective:

To assess adequacy of existing irrigation practices in terms of efficient water use and production level as a base to develop and promote better irrigation practices.

Required data and information:

In order to evaluate existing practices, actual data should be collected through field surveys and interviews with farmers. Although a detailed survey would provide more accurate information, a rapid survey on certain parameters would provide already useful indications, as shown in our example.

The minimum data information should include, apart from general information on climate, crops and soils:

Crop information:	Variety, planting date, harvest date
Climate:	Data on actual rainfall over concerned growing season, as far as available
Irrigation freq:	Actual dates of irrigation, or
	Average irrigation interval practised, or Number of irrigations over the growing season.
Irrigation appl:	Estimate of average irrigation depth per irrigation according to irrigation method practised
Soil:	Estimate texture class of soil

Example: Sorghum

During a field visit to Rajolibanda (1986), the following information was obtained from discussions with farmers and from field observations:

Crop:	HYV sorghum, grown for certified seed production
Planting date:	13 September
Harvest date:	20 January (estimated)
1st irrigation:	25 November
Interval period:	20-25 days
Irrigation method:	Basin irrigation, size 10 x 25 m
Application depth:	70-80 mm (estimated)
Soil type:	Red Clay (180 mm/m) (estimated)
Rainfall data:	Sept. 8 mm Oct. 107 mm
	Nov. 67 mm Dec. 0
	Jan-April 0 mm
ETo	Average climate data Kurnool

Data Processing

- Climate file generated with updated rainfall information, (see Appendix 4.2)
- Crop file for HYV sorghum updated (127 days).
- Soil file updated for Red Clay (180 mm).

CWR Calculation

The crop water requirements calculated for the concerned crop show:

Total ETcrop	= 412 mm
Eff. Rain	= 135 mm
Irr. Requirement	= 227 mm

Scheduling Procedures

After processing of CWR calculations and soil data input the following options are selected:

-	Timing Option:	 Each irrigation defined by user
-	Application Option:	(4) Fixed irrigation application according to field irrigation
		method (70 mm)

A printout of the results is given in Table 19.

The example shows a reasonably good adaption of farmers' practice to calculated irrigation requirements.

A further check may be made how valid the practice is, for instance, in normal, dry and wet years. Also a further assessment in the field of the application depth may confirm the results.

7.3.3 Rainfed production and supplementary irrigation

Objective:

- To assess the adequacy of rainfall for crop growth.
- To determine yield reductions due to rainfall deficits.

Climate Station : KURNOOL Crop : HYV Sorghum Soil : Red Clay Irrination Ontions wherted :						Climate File : kura-86 Planting date : 13 September Available Soll moisture : 180 mm/m Initial Soil moisture : 180 mm/m					
Irrigation Options selected : Taning : Dates defined by user 1/72 / 93/114 Applications : Fixed Triagation depth of 70 mm											
No. Irr.	Int days	Date	Stage	Deplet %	TX %	ETA S	NetDep. 1848	Deficit	Low	GrDep.	Flow L/s/ha
1	72	25 Nov	с	27	100	100	70.0	0.0	21.4	100.0	0.16
2	21	16 Dec	C	39	100	100	70.0	0.0	0.3	100.0	0.55
3	21	7 Jan	D	42	100	100	70.0	5.1	0.0	100.0	0.55
END	14	21 Jan	D	23	100	100					
Total Gr	es Irriga	tion	300.	aros 6		Total R	infall		184	.4	
Total Irri	gation Lo	1565	210.0 mm 21.7 mm		Total Rain Loss		2.0 mm				
Moist De	ficit at ha	rrest	41.1	-							
Net Supp	ly + Soil	retention	251.	anna.							
Actual W	ater use l	by crop	411.9 mm			Actual Irr.Rea			229.4 mm		
Potential	Water us	e by crop	411.5	e mos							
Efficiency	Irr. Sch	edule	89.7 %			Efficien	y Rain	98.9 1	6		
Deficienc	y Irr. Sch	edule	0.0	5							

Table 19

Printout - Evaluation irrigation practices sorghum

To determine feasibility of supplementary irrigation.

To develop supplementary irrigation schedules.

Required data:

- Climate: The rainfall data used will concern in general statistically processed values with assigned probability values (80, 50 or 20), but also historical rainfall data may be used. In our example, climatic data of a normal year (50%) area used.
- Crop: Crops and crop varieties normally grown under rainfall should be taken. An adjustment of the crop file may be necessary as rainfed crops will in general be better adapted to stress conditions than higher yielding irrigated crops; consequently length of growing stages, rooting depth, allowable depletion levels and yield response factor will need to be adjusted. In our example, cotton has been used as a crop to show the procedures.
- Soil: Predominant soils for rainfed crops should be taken. In our example, the deep Black Clay Soils have been used to assess suitability of rainfed cotton.

CWR Calculations

The crop water requirements of cotton calculated earlier show for cotton planted 1 August the following summarized results: Total ET cotton = 750 mm Effective rain = 250 mm Irr. Requirements = 501 mm

Scheduling Procedures

To assess the effect of rainfall deficits on crop growth, the following options should be selected in CROPWAT:

- Timing Option: (8) Rainfed, no irrigation applied
- Application Option: Not required

A printout of the results is shown in Table 20.

Construction COTTON Sol COTTON COTTON Sol COTTON COTTON Sol COTTON Sol Sol Sol <t< th=""><th></th><th></th><th></th><th>IRRIGA</th><th>TION SCI</th><th>IEDULI</th><th>ING</th><th>COTTO</th><th>(1 August</th><th></th><th></th><th></th></t<>				IRRIGA	TION SCI	IEDULI	ING	COTTO	(1 August			
Lings Description Second Seco												
Constraint Link Cory Col A valuable for monitors 1 200 mm /m Training Index Cory Col A valuable for monitors 1 200 mm /m Training Training Name Software Software Training A shall Software Software Software Nr. East Data Software Software Software 1 11 1 4 and and A software Software Software Software 3 10 1 5 sep 8 6 100	Climate N	tation :	COTTON	6			Cheste	rue			BLM-MAG	
And Construction A matrix and particular distribution No. International distribution No. International distribution No. International distribution No. No. International distribution No. No. International distribution No. International distribution No. International distribution No. No. International distribution No. No. No. </td <td>c.op</td> <td></td> <td>Black Char</td> <td>6.2</td> <td></td> <td></td> <td>I suitely</td> <td>a Coll mainte</td> <td>-</td> <td></td> <td>100 aprentices</td> <td></td>	c.op		Black Char	6.2			I suitely	a Coll mainte	-		100 aprentices	
Marging Organization: 1: Barting : Definition: with standard s	500		make City	OV4			A Banger					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Irrigation Timing Field Appl	Options : No Ir lication I	selected : rigations, on Efficiency 70	ly Rainfall %								
Irr. Grys - % % no max no n	No.	Int	Date	Stage	Deplet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
1 11 14 A 10 100 100 125 5.0 32.3 89.9 2 16 12 Aeg A 7 100 100 125 3.5 32.5 85.0 3 18 1.5 ep B 6 100 100 121 3.5 32.5 51.0 32.5 51.0 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.5 32.5 42.	Irr.	days		-	5	%	5	15.00	10.00	25.45	86.05	L/s/ka
2 10 21 act 7 100 100 221 act 7 26 91.0 3 10 12 act 7 100 100 221 127 225 92.0 93.0 3 10 12 act 7 100 100 221 427 225 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 93.0 120.0 6 100 100 43.0 13.2 73.0 93.0	1	11	11 Aug	A	10	100	160	15.5	8.9	35.3	50.9	0.54
j i 1 br i 1 br i <th1 br<="" th=""> 1 br 1 br <th1< td=""><td>2</td><td>10</td><td>21 Aug</td><td>A</td><td>7</td><td>100</td><td>100</td><td>22.1</td><td>8.7</td><td>28.9</td><td>51.0</td><td>0.59</td></th1<></th1>	2	10	21 Aug	A	7	100	100	22.1	8.7	28.9	51.0	0.59
4 0 15mg 6 100 102 113 143 543 551 617 5 0 215mg 0 100 100 103 112 133 543 541 551 617 6 10 100 100 103 114 11	3	10	1 Sep	8	6	100	100	21.4	8.8	32.4	53.9	0.62
5 8 11 Sep 10 8 6 100 100 12.2 12.3 3.5.6 (1.7) 5 10 10.4 8 6 100 100 10.3 12.3 3.5.6 (1.7) 6 10 100 100 100 40.0 42.3 12.3 3.5.6 (1.7) 7 10 100 100 40.0 42.3 12.3 3.6.4 (4.0) 9 10 10.8 100 100 40.0 42.3 10.0 10.0 100 100 42.3 10.0<	4	10	11 Sem	8	6	100	190	23.2	10.2	34.9	58.1	0.67
6 10 10 1 14.5 22.3 56.4 7 18 10 CH 8 6 100 100 33.4 14.5 22.3 56.4 9 18 10 CH 8 6 100 100 45.7 15.2 10.7 25.5 6.6 45.1 15.3 23.2 6.8 45.1 9 18 10 Ker C 7 100 100 45.1 23.2 6.8 45.1 10 10 10 10.8 10.7 100 100 45.7 7.9 5.0 6.4 6.3 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.4 6.0 23.2 4.6 6.0 10.1 10.1 10.0 10.6 10.0 10.0 10.0 1	5	10	21 Sen	B	6	100	100	28.2	12.5	33.5	61.7	0.71
7 8 10 Crt 8 6 100 100 44.7 16.3 7.3 17.4 9 10 Crt C 7 100 100 44.7 16.3 7.3 17.4 9 10 1.Nev C 17 100 100 44.7 16.3 7.3 17.4 10 10 1.Nev C 17 100 100 100 3.4 4.0 44.5 4.0 44.5 11 10 1.Nev C 2.0 100 100 100 4.0 3.1 4.0 4.6 4.0 41.5 4.0 4.0 4.6 4.0 4.0 4.0 4.0 4.0 4.0 4.6 4.0 <td< td=""><td>6</td><td>10</td><td>1 Oct</td><td>8</td><td>6</td><td>100</td><td>100</td><td>33.6</td><td>14.5</td><td>22.8</td><td>56.4</td><td>0.65</td></td<>	6	10	1 Oct	8	6	100	100	33.6	14.5	22.8	56.4	0.65
i ii iii iii iiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	7	10	11 Oct	8	6	100	100	44.7	16.3	7.8	52.6	0.61
0 1 Nor C 10 100	8	10	21.0-1	c	7	100	100	45.0	20.3	0.0	48.0	0.56
0 11 Nor. C 17 100 102 24.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4.4 6.0 22.2 6.4 6.0 9.3 13 10 10 10.5 C 6.4 111.4 6.0 6.4 9.3 13 10 10 10.5 6.4 11.4 6.0 6.4 11.4 6.0 6.4 11.4 6.0 6.4 11.4 6.0 6.4 10.1 10 11.5 10 11.5 10 11.5 10 11.5 10 11.5 10 11.5 10 11.5 10 11.6 10 10 11.6 10 10 10 10.6 10.5 10 10.6 10.5 10.6 10.6 10.6 10.6	9	10	1 Nor	č	10	100	100	36.1	28.5	0.0	36.1	0.42
11 10 12 Sin C 21 100 100 73 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 77.4 6.0 9.3 6.3 17.4 6.0 9.3 6.3 17.4 6.0 9.3 6.3 17.4 6.0 9.3 6.3 17.7 6.0 1.4 10 11.2 0 0 2.4 70 9.3 10.7 10.7 6.0 6.0 6.0 6.0 6.0 7.1 10.7 0.0 11.4 10.0 10.2 10.2 10.2 10.0 10.0 10.2 10.2 10.0 10.0 10.2 10.2 10.0 10.0 10.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <th10.0< th=""> 10.0 10.0 <th< td=""><td>10</td><td>10</td><td>11 Nor</td><td>č</td><td>17</td><td>100</td><td>100</td><td>22.2</td><td>48.4</td><td>0.0</td><td>22.2</td><td>0.26</td></th<></th10.0<>	10	10	11 Nor	č	17	100	100	22.2	48.4	0.0	22.2	0.26
13 19 1 Dec C 40 100 164 111.4 6.0 6.4 13 19 1 Dec C 54 110 100 5.4 11.14 6.0 6.4 3.14 6.0 6.4 3.14 6.0 6.4 3.14 6.0 6.4 3.14 6.0 6.4 3.14 6.0 6.3 3.4 6.0 1.0 <td>11</td> <td>10</td> <td>21 Now</td> <td>č</td> <td>28</td> <td>100</td> <td>100</td> <td>9.1</td> <td>79.0</td> <td>0.0</td> <td>9.1</td> <td>0.11</td>	11	10	21 Now	č	28	100	100	9.1	79.0	0.0	9.1	0.11
10 11 10c C 22 100 100 33 1654 0.6 34 14 10 110c C 52 100 100 13 1654 0.6 34 15 10 110c D 7 64 79 63 175.7 64 63 1.6 1.3 15 10 110c D 73 64 79 63 215.3 6.6 6.3 6.3 6.7 17 10 110c D 74 64 517.5 64 <td< td=""><td>12</td><td>10</td><td>1 Dec</td><td>č</td><td>40</td><td>100</td><td>100</td><td>6.6</td><td>111.4</td><td>0.0</td><td>6.6</td><td>0.08</td></td<>	12	10	1 Dec	č	40	100	100	6.6	111.4	0.0	6.6	0.08
14 10 12 bec 13 10 14 10 19 1.6 177.7 0.6 1.6 177.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 1.6 0.7 0.6 0.6 0.7 1.7 0.8 1.0 0.7 0.6 0.7 0.7 0.6 0.6 0.7 1.7 0.8	11	10	11 Dec	č	62	100	100	2.8	145.4	0.0	2.8	0.04
10 11 Jam D 72 64 79 63 2024 64 63 63 171 18 111 Jam D 94 65 55 55 53 53 53 53 53 53 53 53 53 54 64 63 63 171 18 13 38 18	14	10	21 Dec	D	64	92	69	1.0	179.7	0.0	1.0	0.01
16 11 2m 0 10 12 </td <td>15</td> <td>10</td> <td>1 Jan</td> <td>D</td> <td>73</td> <td>68</td> <td>79</td> <td>0.7</td> <td>205.8</td> <td>0.0</td> <td>0.7</td> <td>0.01</td>	15	10	1 Jan	D	73	68	79	0.7	205.8	0.0	0.7	0.01
IT 10 11 (m) 10 11 (m) 10 11 (m) 10	16	10	11 Ian	D	80	52	69	0.3	223.7	0.0	0.3	0.00
END 10 17-bs D 17 33 34 Tead Grows Irrigation for del registric class 6.3 mm Tead Registric 513 mm Tead Grows Irrigation for del registric class 6.3 mm Tead Registric 513 mm Tead Cristality 6.3 mm Tead Registric 513 mm Tead Registric 6.3 mm Tead Registric 513 mm Tead Registric 6.4 mm Tead Registric 513 mm Tead Registric 6.4 mm Tead Registric 6.1 % VILED RECETIONS Stage A B C D Season Referencement ETC 6.4 % 6.4 % 6.4 % 6.4 % 9 %	17	10	21 Jan	D	84	- 40	45	0.0	236.2	0.0	0.0	0.00
A B D Second Second Second	END	10	1 Feb	Ď	87	33	36		1.76.8		0.0	0.00
Tabl Nutripication 0.8 am Efficient Rain 337.5 mm Tabl Arguingt Lands 0.8 am Tabl Real 337.5 mm Efficienty Link 100.8 % FEfficienty Rain 61.3 % Efficienty Link 100.8 % FEfficienty Rain 61.3 % HELD REDUCTIONS Stage A B C D Statem Reductions in ETC 4.0 % 0.4 % 0.4 % 5.4 %	fotal Gro	us Irrigal	ion	0.0 =	101		Total Ra	un fall		513	3 mm	
A B C D Seame Michael Dr. Scholar 100,0 % 4.0 % 4.0 % 4.0 % 4.0 % Michael Dr. Scholar 4.0 % A B C D Seame Michael Dr. Scholar 4.0 % 6.0 % 5.0 % <td< td=""><td>Total Net</td><td>Irrigatio</td><td></td><td>0.0 #</td><td>101</td><td></td><td>Effective</td><td>r Rain</td><td></td><td>317</td><td>5 mm</td><td></td></td<>	Total Net	Irrigatio		0.0 #	101		Effective	r Rain		317	5 mm	
Ifficiency Inc. Schedule 100.0 % Ifficiency Rain 61.3 % Indicatory Inc. Schedule 8.4 % 8 C D Searce Reductions In ETC 4.8 % 6.0 % 0.4 % 8.4 % 9	l'otal Irrig	cation Lo	6566	0.0 =			Total Ra	uin Loss		195	.8 mm	
Dickings for Skedul E.4.5 Linking and Linking and VILD BREDICTIONS Sugr A B C D Semining and	Wielener	Ire Sch	while	100 (Efficient	w Rain		61		
NELD REDUCTIONS Stage A B C D Search Reductions in STC 0.0 0.0 0.0 0.0 5.3 6.4 5.5 Vidi Japones faster 0.40 0.40 0.30 0.40 5.5 5.5	Deficiency	Irr. Sch	edule	8.4	5		LILLA	.,				
Reductions in ETC 0.0 0.0 35.3 8.4 5 Yidd Rappener factor 0.40 0.60 0.30 0.40 0.50	TELD R	EDUCTI	ONS Stage		A		в	с	D	Sea	SCHE	
Yield Response factor 0.40 0.60 0.30 0.40 0.50	Coductions	in FTC							36.8	2.4		
	Vield Ros	onese for	tor		0.4		0.60	0.90	0.40	0.90		
100 TOUR IN THE 10 TO 147 AX 5	Inductions	in Viale			0.0		0.0	0.0	14.7	6.8		
Completing Vidd makert 0.0 0.0 0.0 14.7 5.	Cumulatio	ve Vield	reduct		0.0			0.0	14.7	0.0		

Table 20

Printout - Rainfed production level of cotton

Results show clearly that the yield of cotton is substantially affected by stress in the latter part of its growing stage, which will no doubt cause a premature senescence of the crop.

Supplementary irrigation will probably increase crop yields.

A supplementary supply of three irrigations every three weeks from 1 November would guarantee an optimal cotton production, as determined earlier under para. 7.2.1.

For further details, reference is made to Appendix 4.1.

7.3.4 Deficit irrigation

Objective

- To assess the effect of limited water supply on crop growth for conditions of restricted water availability.
- To develop an alternative irrigation schedule optimizing crop production under limited water supply conditions.

Required Data

A similar data set as used under option 7.2.1 can be used.

We have taken groundnuts planted in Rabi on 1 November with a normal climatic data set, grown on a red clay soil as an example to show the calculation procedures.

CWR Calculations

Crop water requirements of groundnuts have been calculated earlier:

Total ET crop	:	387 mm
Effective rain	- 1	27 mm
Irr. Requirements	:	350 mm

Scheduling Procedures

The following options should be selected in the CROPWAT scheduling program:

-	Timing Option:	Deficit Irrigation:
		(7) Fixed yield reduction or
		(6) Fixed ETo reduction;

NOTE: as our aim is to optimize crop production under restricted water supply, we will choose option 7.

An initial value: 10% may be given, in later runs possibly increased or decreased.

 Application Option: (4) Fixed irrigation depth 40 mm typical for groundnut irrigated on furrows.

Scheduling Results

In Table 21 the results of the schedule are shown, with an approximate 10% reduction in yield. The irrigation supply is 240 mm, compared to a previous irrigation supply requirement of 440 mm (see para. 7.4.1).

: KURNOOL	Climate File	:	kurn-av
: GROUNDNUT/RAB1	Planting date	1	15 Dece
: Red Sandy Loam	Available Soil moisture		140 mm
	Initial Soil moisture	:	140 mm
as selected :			
: Fixed yield deficit of: 10 %			
: Fixed Irrigation depth of 45 mm			
Villeiner 70%			
	: KURNOOL : GROUNDNUT/RAB1 : Red Sandy Leam as selected : : Fixed yield deficit nf: 10 % : Fixed yield deficit nf: 10 % : Fixed yield deficit nf: 10 % : Fixed yield deficit nf: 10 %	: KURNOD. Cinate File GROUNDATURADI Planting data : Red Sandy Learn Available Sail moisture nai solected : : Fieed yield dicks 47:10 % : Fieed print dicks 47:10 % : Fieed print dicks 47:10 %	: KUKNOOL Clinate File : : KUKNOOL Planing data : : Red Scoth Juan Available Sall moisture : in subject of : : Fried yield adjects at 21.0 % : Triout fried adjects at 21.0 % : Triout fried adjects of 45 sum

No. krr.	Int days	Date	Stage	Deplet %	TX %	ETA %	NetDep. mm	Deficit mm	Lous	GrDep.	Flow L/s/ha
1	51	6 Feb	с	73	58	89	45.0	36.7	0.0	64.3	0.15
2	11	17 Feb	с	71	63	\$8	45,0	35.0	0.0	64,3	0.68
3	10	27 Feb	С	71	65	89	45.0	34.0	0.0	64.3	0.74
4	10	7 Mar	с	72	62	88	45.0	35.7	0.0	64,3	0.74
5	10	17 Mar	D	74	59	86	45.0	37.4	0.0	64,3	0.74
6	10	27 Mar	D	72	61	87	45.0	36.0	0.0	64,3	0.74
END	9	6 Apr	D	62	82	96					
Total Gr	oss Irrigat	ion	385.	7 mm		Total R	ainfall		10.	0 mm	
Total Net	Irrigation		270.	mm		Effectiv	e Rain		10.	0 mm	
Total Irr	igation Lo	1505	0.0	10.05		Total R	ain Loss		0.0) mam	
Moist De	ficit at ha	rvest	69.5	mm							
Net Supp	ły + Soil	retention	339.1	B earm							
Actual W	ater use b	у сгор	349,3	8 1010		Actual 1	rr.Req		335	.8	
Potential	Water us	by crop	393.	5 80.09							
Efficiency	y Irr. Sch	dule	100.	1.5		Efficien	cy Rain	100.05			
Deficienc	y Irr. Sch	odule	11.1	5							
VIELD B	EDUCTION	ONS Stage		A		в	с	D	Sea	son	
				_							
Neulachio	is in ETC			0.0	10	11.0	11.1	12.5	11.	1 %	
THEN RA	opende fill	eor .		0.4	~	0.00	1.00	10.00	0.1		
Cumulat	as an These	and and		0.0		6.6	17.0	25.3	a.5		
C and this	176 1 H40	COMPLET.		0.0			47.9	+5.5			

Table 21

Printout - Deficit irrigation of groundnut

IRRIGATION SCHEDULING GROUNDNUT/RABI 15 December

APPENDIX 1

PRINTOUT CLIMATIC DATA FILES

1.	Reference Evapotranspiration Kurnool
2.	Average Climatic Data Kurnool
3.	Dry Year Climatic Data Kurnool
4.	Normal Year Climatic Data Kurnool
5.	Wet Year Climatic Data Kurnool
6.	1986 Climatic Data Kurnool

1.

Country Altitude	: RAJOLII : 281 meter	BANDA	Meteo Stat Coordinate	tion IS	: KURNOOL : 16.00 N.L.		
Month	AvgTemp	Humidity %	Windspeed km/day	Sunshine hours	Radiation MJ/m ¹ /day	ETo- PenMon mm/day	
January	24.2	51	117	8,1	8.8	3.82	
February	26.8	41	132	8.4	10.0	4.85	
March	30.0	35	148	7.6	10.9	5.86	
April	32.7	37	167	7.3	11.9	6.60	
May	33.6	41	257	6.7	11.9	7.64	
June	30.3	58	405	5.3	11.2	6.78	
July	28.2	66	409	4.9	10.9	5.66	
August	27.8	66	353	5.6	11.4	5.50	
September	27.6	67	242	6.0	11.3	4.91	
October	27.4	64	115	7.2	11.0	4.26	
November	25.1	58	98	7.4	9.2	3.64	
December	23.5	55	94	7.9	8.4	3.36	
YEAR	28.1	53	211	6.9	10.6	1913	

2.

limate file : kurn-av		Climate Station	: KURNOOI
	ETo (mm/day)	Rainfall (mm/month)	Eff. Rain (mm/month)
January	3.8	0.0	0.0
February	4.9	5.0	4.0
March	5.9	2.0	1.6
April	6.6	11.0	8.8
May	7.6	49.0	39.2
June	6.8	79.0	63.2
July	5.7	106.0	84.8
August	5.5	109.0	87.2
September	4.9	128.0	102.4
October	4.3	99.0	79.2
November	3.6	26.0	20.8
December	3.4	2.0	1.6
YEAR Total	1912.8	616.0	492.8 mm

APPENDIX 2

CROP DATA FILES

1.	Paddy
2.	Sorghum
3.	Sugarcane
4.	Cotton
5.	Groundnut - Kharif
6.	Groundnut - Rabi

RICE DATA INPUT							
Crop : PADDY							
Growth period	Length	Stage	Crop coefficient				
Nursery	30	days	1.20				
Land preparation	20	days					
Initial Stage (A)	20	days	1.10				
Developm. Stage (B)	30	days					
Mid-season (C)	40	days	1.05				
Late Season (D)	30	days	0.80				
Total	150	days					
Nursery Area	10	*					
Land cultivation	180	mm					
Percolation rate	3.0	mm/day					

Crop data : SORC	HUM		Crop file	: SORGHUM		
Growth Stage		Init	Devel	Mid	Late	Total
Length Stage	[days]	20	40	30	30	120
Crop Coefficient	[coeff.]	0.40	->	1.15	0.50	
Rooting Depth	[meter]	0.30	->	1.40	1.40	
Depletion level	[fract.]	0.60	->	0.50	0.80	
Yield-response F.	[coeff.]	0.20	0.40	0.55	0.20	0.90

Growth Stage		Init	Devel	Mid	Late	Tota
Length Stage	[days]	90	90	90	90	360
Crop Coefficient	[coeff.]	0.95	->	0.95	0.95	
Rooting Depth	[meter]	1.50	->	1.50	1.50	
Depletion level	[fract.]	0.60	->	0.60	0.60	
Yield-response F.	[coeff.]	1.20	1.20	1.20	1.20	1.20

Growth Stage		Init	Devel	Mid	Late	Total
Length Stage	[days]	30	50	55	45	150
Crop Coefficient	[coeff.]	0.40	->	1.10	0.55	
Rooting Depth	[meter]	0.30	->	1.40	1.40	
Depletion level	[fract.]	0.60	->	0.60	0.60	
Yield-response F.	[coeff.]	0.40	0.60	0.80	0.40	0.80

Growth Stage		Init	Devel	Mid	Late	Total
Length Stage	[days]	20	30	35	25	110
Crop Coefficient	[coeff.]	0.40	.>	1.00	0.70	
Rooting Depth	[meter]	0.30	->	0.80	0.80	
Depletion level	[fract.]	0.50	->	0.50	0.50	
Yield-response F.	[coeff.]	0.40	0.60	1.00	0.80	0.80

crop and 1 oncore	one maner		crop me			
Growth Stage		Init	Devel	Mid	Late	Total
Length Stage	[days]	20	30	35	25	110
Crop Coefficient	[coeff.]	0.20	->	1.00	0.70	
Rooting Depth	[meter]	0.30	->	0.80	0.80	
Depletion level	[fract.]	0.50	->	0.50	0.50	
Yield-response F.	[coeff.]	0.40	0.60	1.00	0.80	0.80

APPENDIX 3

CROP WATER REQUIRMENTS CALCULATIONS

No.	Crop	(T) Plant Date	Harvest Date
1	Paddy	10 July	10 Nov
2	Paddy	20 July	20 Nov
3	Paddy	1 Aug	1 Dec
4	Paddy	10 Aug	10 Dec
5	Paddy	10 Dec	10 Apr
6	Paddy	20 Dec	20 Apr
7	Paddy	1 Jan	1 May
8	Cotton	15 July	1 Feb
9	Groundnut	15 July	5 Nov
10	Groundnut	1 Aug	20 Nov
11	Groundnut	15 Aug	5 Dec
12	Groundnut	15 Dec	5 Apr
13	Groundnut	1 Jan	20 Apr
14	Groundnut	15 Jan	5 May
15	Sorghum	15 July	15 Nov
16	Sorghum	1 Aug	1 Dec
17	Sugarcane	perena	lainl

Climate Crop Effective	Rainfal		1 1	ADDY 0%		Se Di	ation ats of Tran	splant	: KU : 10	July	
Month	Dec	Stage	Area 5	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	IRReq mm/dy	IRReq mm/de
Jun	2	NUR	0.10	1.20	0.81	0.3	1.8	2.9	2.1	2.70	27.0
Jun	3	LP	0.33	1.18	2.45	1.0	8.1	11.5	7.6	10.76	107.6
Jul	1	LP	0.78	1,13	5.20	2.3	8.1	15.6	20.0	13,62	136,2
Jul	2	A	1.00	1.10	6.12	3.0	0.0	9.1	28.3	6.29	62.9
Jul	3	A	1.00	1.10	6.09	3.0	0.0	9.1	28.5	6.24	62.4
Aug	1	B	1.00	1.09	6.06	3.0	0.0	9.1	28.8	6.18	61.8
Aug	2	в	1.00	1.07	5.91	3.0	0.0	\$.9	29.1	6.01	60.1
Aug	3	в	1.00	1.06	5.61	3.0	0.0	8.6	30.8	5.54	\$5.4
Sep	1	с	1.00	1.05	5.36	3.0	0.0	8.4	33.1	5.05	50.5
Sep	2	с	1.00	1.05	5.16	3.0	0.0	\$.2	35.1	4.64	46.4
Sep	3	С	1.00	1.05	4.93	3.0	0.0	7.9	32.2	4.71	47.1
Oct	1	с	1.00	1.05	4,70	3.0	0.0	7.7	30.0	4.70	47.0
Oct	2	Ð	1.00	1.01	4.30	2.5	0.0	6.8	27.4	4.06	40.6
Oct	3	D	1.00	0,92	3.75	1.8	0.0	\$.5	20.6	3.44	34.4
Nov	1	D	1.00	0.84	3.24	0.9	0.0	4.1	13.1	2.80	28.0

Climate Crop Effective	File Rainfal		: 1	ADDY		Sk Di	ation ate of Tran	splant	: KU : 20	July	
Month	Dec	Stage	Area S	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	IRReq mm/dy	1RReq mm/d
Jun	3	NUR	0.10	1.20	0.77	0.3	1.8	2.9	2.3	2.63	26.3
Jul	1	LP	0.33	1.18	2.28	1.0	8.1	11.4	8.4	10.51	105.1
Jul	2	LP	0.78	1.13	4.85	2.3	8.1	15.3	21.9	13.08	130.8
Jul	3	A	1.00	1.10	6.09	3.0	0.0	9.1	28.5	6.24	62.4
Aug	1	A	1.00	1.10	6.11	3.0	0.0	9.1	28.8	6.23	62.3
Aug	2	в	1.00	1.09	6.00	3.0	0.0	9.0	29.1	6.10	61.0
Aug	3	8	1.00	1.07	5.70	3.0	0.0	\$.7	30.8	5.63	56.3
Sep	1	в	1.00	1.06	5.40	3.0	0.0	8.4	33.1	5.09	50.9
Sep	2	C	1.00	1.05	5.16	3.0	0.0	8.2	35,1	4.64	46.4
Sep	3	с	1.00	1.05	4.93	3.0	0,0	7.9	32.2	4.71	47.1
Oct	1	с	1,00	1,05	4.70	3.0	0.0	7.7	30.0	4.70	47.0
Oct	2	с	1,00	1.05	4,47	3.0	0.0	7.5	27.4	4.73	47.3
Oct	3	D	1.00	1.01	4.09	2.5	0.0	6.6	20.6	4.53	45.3
Nev	1	D	1.00	0.92	3.56	1.8	0.0	\$.3	13.1	4,00	40.0
Not	2	Ð	1.00	0.84	3.06	0.9	0.0	3.9	5.9	3.35	33.5
Totais					672	357	180	1209	347		\$62

Climate Crop Effective	Rainfal		: 4	ADDY 0%		94 De	ation ate of Tran	splant	: KU : 17		
Month	Dec	Stage	Area %	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	1RReq mm/dy	1RReq mm/de
Jul	1	NUR	0.10	1.20	0.72	0.3	1.8	2.8	2.6	2.56	25.6
Jul	2	LP	0.33	1.18	2,12	1.0	8.1	11.2	9.2	10,28	102.8
Jul	3	LP	0.78	1.13	4.83	2.3	8.1	15.3	22.1	13.04	130.4
Aug	1	A	1.00	1.10	6.11	3.0	0.0	9.1	28.8	6.23	62.3
Aug	2	A	1.00	1.10	6.05	3.0	0.0	9.1	29,1	6.14	61.4
Aug	3	B	1.00	1.09	5.79	3.0	0.0	8.8	30.8	5.71	\$7.1
Sep	1	в	1.00	1.07	5.49	3.0	0.0	\$.5	33.1	5.18	51.8
Sep	2	B	1.00	1.06	5,20	3.0	0.0	8.2	35.1	4.68	46.8
Sep	3	с	1.00	1.05	4.93	3.0	0.0	7.9	32.2	4.71	47.1
Oct	1	с	1.00	1.05	4,70	3.0	0.0	7,7	30.0	4,70	47.0
Oct	2	с	1,00	1.05	4.47	3.0	0.0	7.5	27,4	4.73	47.3
Oct	3	с	1.00	1.05	4,26	3.0	0.0	7.3	20.6	5.20	52.0
Nov	1	D	1.00	1.01	3.88	2.5	0.0	6.4	13.1	5.07	50,7
Nov	2	D	1.00	0.92	3.37	1.8	0.0	5.1	5.9	4.52	45.2
Nov	3	D	1.00	0.84	2.99	0.9	0.0	3.9	4.1	3.45	34.5
Totals					649	357	180	1186	324		862

Climate Crop Effective	File Rainfal		: 1	ADDY 0%		St. Di	ation ate of Trans	splant	: KU : 10	: 10 Aug		
Month	Dec	Stage	Ares %	Coeff	ETCrop mm/day	Perc mm/dy	L.Prep mm/dy	RiceRq mm/dy	EffRain mm/dec	IRReq mm/dy	IRReq mm/d	
لسل	2	NUR	0.10	1.20	0.67	0.3	1.8	2.8	2.8	2.48	24.8	
Jul	3	LP	0.33	1.18	2.12	1.0	8.1	11.2	9.3	10.26	102.6	
Aug	1	LP	0.78	1.13	4.84	2.3	8.1	15.3	22.3	13.03	130.3	
Aug	2	A	1.00	1.10	6.05	3.0	6.0	9.1	29.1	6.14	61.4	
Ang	3	A	1.00	1.10	5.83	3.0	0.0	8.8	30.8	5.76	57.6	
Sep	1	в	1.00	1.09	5.57	3.0	0.0	8.6	33.1	5.26	52.6	
Sep	2	в	1.00	1.07	5.28	3.0	0.0	8.3	35.1	4.76	47.6	
Sep	3	в	1.00	1.06	4.97	3.0	0.0	8.0	32.2	4,74	47.4	
Oct	1	C	1.00	1.05	4,70	3.0	0.0	7,7	30.0	4.70	47.0	
Oct	2	с	1,00	1.65	4,47	3.0	0.0	7.5	27.4	4.73	47.3	
Oct	3	с	1.00	1.05	4.26	3.0	0.0	7.3	20.6	5.20	52.0	
Nov	1	с	1.00	1.05	4.64	3.0	0.0	7.0	13.1	5.73	57.3	
Nov	2	D	1.00	1.01	3.67	2.5	0.0	6.2	5.9	5.58	55.8	
Nov	3	D	1.00	0.92	3.28	1.8	0.0	5.0	4.1	4.62	46.2	
Dec	1	D	1.00	0.84	2.91	0.9	0.0	3,8	2.3	3.55	35.5	
Totals					627	357	180	1164	298		866	

Climate Crop Effective	File Rainfal		: k : F : S	ADDY		St	ation ate of Tran	splant	: KU : 10	RNOOL	
Month	Dec	Stage	Area %	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	IRReq mm/dy	IRReq mm/de
Nov	2	NUR	0.10	1.20	8.44	0.3	1.8	2.5	0.6	2.48	24.8
Nov	3	LP	0.33	1.18	1.35	1.0	8.1	10.4	1.3	10.30	103.0
Dec	1	LP	0.78	1.13	3.01	2.3	8.1	13.4	1.8	13.26	132.6
Dec	2	A	1.60	1.10	3,70	3.0	0.0	6.7	0.5	6.64	66.4
Dec	3	A	1.00	1.10	3.86	3.0	0.0	6.9	0.4	6.83	68.3
Jan	1	B	1.00	1.09	4.00	3.0	0.0	7.0	0.2	6.98	69.9
Jan	2	B	1.00	1.07	4.11	3.0	0.0	7.1	0.0	7.11	71.1
Jan	3	B	1.60	1.06	4.41	3.0	0.0	7.4	0.4	7.36	73.6
Feb	1	с	1.00	1.05	4.73	3.0	0.0	7.7	0.9	7.64	76.4
Feb	2	C	1.00	1.05	5.09	3.0	0.0	8.1	1.3	7.96	79.6
Feb	3	с	1.00	1.05	5.45	3.0	0.0	8.4	1.1	8.34	83.4
Mar	1	С	1.00	1.05	5,80	3.0	0.0	8.8	0.8	8,72	87.2
Mar	2	D	1.00	1.01	5.91	2.5	0.0	8.4	0.5	8.36	83.6
Mar	3	D	1.00	0.92	5.65	1.8	0.0	7.4	1.3	7.27	72.7
Apr	1	D	1.00	0.84	5.35	0.9	0.0	6.2	2.1	6.01	60.1
Totals					629	357	180	1166	13		1152

Climate File : karn-av Crop : PADDY Effective Rainfall : 80%				Si D	ation ate of Tran	splant	: KU : 20	RNOOL December			
Month	Dec	Stage	Area %	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq wm/dy	EffRuin wm/dec	IRReq mm/dy	IRReq mm/de
Nov	3	NUR	0.10	1.20	0.43	8.3	1.8	2.5	0.4	2.48	24.8
Dec	1	LP	0.33	1.18	1.32	1.0	8.1	10.4	0.8	10.32	103_2
Dec	2	LP	0.78	1.13	2.93	2.3	8.1	13.4	8.4	13.31	133.1
Dec	3	A	1.60	1.10	3.86	3.0	0.0	6.9	0.4	6.83	68.3
Jan	1	A	1.00	1.10	4.03	3.0	0.0	7.0	0.2	7.02	70.2
Jan	2	B	1.60	1.09	4.17	3.0	0.0	7.2	0.0	7.17	71.7
Jan	3	B	1.60	1.07	4.48	3.0	0.0	7.5	0.4	7.43	74.3
Feb	1	в	1.00	1.06	4.77	3.0	0.0	7.8	0.9	7.68	76.8
Feb	2	с	1.60	1.05	5.09	3.0	0.0	8.1	1.3	7.96	79.6
Feb	3	С	1.60	1.05	5.45	3.0	0.0	8.4	1.1	8.34	83.4
Mar	1	С	1.00	1.05	5.80	3.0	0.0	8.8	0.8	8.72	87.2
Mar	2	С	1.00	1.05	6.15	3.0	0.0	9.2	0.5	9.10	91.0
Mar	3	D	1.00	1.01	6.16	2.5	0.0	8.7	1.3	8.52	85.2
Apr	1	D	1.60	0.92	5.88	1.8	0.0	7.6	2.1	7.41	74.1
Apr	2	D	1.00	0.84	5.56	0.9	0.0	6.4	2,9	6.14	61.4
Totals					661	357	180	1198	14		1184

Climate Crop Effective	amate Pile : kurn-av rop : PADDY fective Rainfall : 80%				Station Date of Transplant				RNOOL		
Month	Dec	Stage	Area %	Coeff	ETCrop mm/day	Perc mm/dy	LPrep mm/dy	RiceRq mm/dy	EffRain mm/dec	1RReq mm/dy	1RReq mm/de
Dec	1	NUR	0,10	1.20	0.41	0.3	1.8	2.5	0.2	2.49	24.9
Dec	2	LP	0.33	1.18	1.28	1.0	8.1	10.4	0.2	10.34	103.4
Dec	3	LP	0.78	1.13	3.06	2.3	8.1	13.5	0.3	13.46	134.6
Jan	1	Α	1.00	1.10	4.03	3.0	0,0	7,0	0.2	7.02	70,2
Jan	2	A	1.00	1.10	4.20	3.0	0.0	7.2	0.0	7.20	72.0
Jan	3	в	1.00	1.09	4.54	3.0	0.0	7.5	0.4	7.50	75.0
Feb	1	B	1.00	1.07	4.84	3.0	0.0	7.8	0.9	7.76	77.6
Feb	2	в	1.00	1.06	5.13	3.0	0.0	8.1	1.3	8.00	\$9.0
Feb	3	с	1.00	1.05	5.45	3.0	0.0	8.4	1.1	8.34	\$3.4
Mar	1	С	1.00	1.05	5,80	3.0	0.0	8.8	0.8	8.72	87.2
Mar	2	Ċ	1.00	1.05	6.15	3.0	0.0	9.2	0.5	9.10	91.0
Mar	3	с	1.00	1.05	6.41	3.0	0.0	9.4	1.3	9,28	92.8
Apr	1	D	1.00	1.01	6.41	2.5	0.0	8.9	2.1	8.69	86.9
Apr	2	D	1.00	0.92	6.10	1.8	0.0	7.9	2.9	7.56	75.6
Apr	3	D	1.00	0.84	5.85	0.9	0.0	6.7	6.3	6.09	60.9
Totals					697	357	150	1234	19		1215

Month	Dec	Stage	Coeff		Cannate Station 1 K URNOOL Planting date 1 August							
Aug			Kc	ETcrop mm/day	ETcrep mm/dec	Eff.Rain mm/dec	IRReq. mm/day	1RReq. mm/de				
Ane		init	0.40	2.22	22.2	28.8	0.00	0.0				
	2	antait	0.40	2.20	22.0	29.1	0.00	0.0				
Aug	3	intit	0.40	2.12	21.2	30.8	0.00	0.0				
Sep	1	deve	0.47	2.40	24.0	33.1	0.00	0.0				
Sep	2	deve	0.61	3.00	30.0	35.1	0,00	0.8				
Sep	3	deve	0.75	3.52	35.2	32.2	0.30	3.0				
Oct	1	deve	0.89	3.98	39.8	30.0	0.99	9.9				
Oct	2	deve	1.03	4.39	43.9	27.4	1.65	16.5				
Oct	3	mid	1.10	4.46	44.6	20.6	2.40	24.0				
Nov	1	bim	1.10	4.23	42.3	13.1	2.92	29.2				
Nov	2	mid	1.10	4.00	40.0	5.9	3.41	34.1				
Nev	3	bim	1.10	3.90	39.1	4.1	3,49	34.9				
Dec	i	mid	1.10	3.80	38.0	2.3	3.57	35.7				
Dec	2	mift	1.07	3.59	35.9	0.5	3.54	35.4				
Dec	3	late	0.98	3,44	34.4	0.4	3.40	34.0				
lan	1	late	0.86	3.14	31.4	0,2	3.12	31.2				
Jan	2	late	0.73	2.80	28.0	0.0	2.80	28.0				
Jan	3	late	0.61	2.54	25.4	0.4	2.50	25.0				

Climate Crop	ile: kum-av : GROUNDNUT/KILARIF			Climate Station : Planting date :	: KURNOOL : 15 July	L		
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	iRReq. mm/dec
Jul	2	init	0.40	2.22	11.1	14.1	0.00	0.0
Jul	3	init	0.40	2.22	22.2	28.5	0.60	0.0
Aug	1	in/de	0.45	2.50	25.0	28.8	0.00	0.0
Aug	2	deve	0.60	3.30	33.0	29.1	0.39	3.9
Aug	3	deve	0.80	4.24	42.4	30.8	1.17	11.7
Sep	1	de/mi	0.95	4.85	48.5	33.1	1.54	15.4
Sep	2	nid	1.00	4,91	49.1	35.1	1.40	14.0
Sep	3	mid	1.00	4.69	46.9	32.2	1.47	14.7
Oct	1	mid	1.00	4,48	44.8	30.0	1.48	14.8
Oct	2	late	0.94	4.00	40.8	27.4	1.26	12.6
Oct	3	late	0.82	3.32	33.2	20.6	12.7	12.7
Nov	1	late	0.70	2.69	13.5	6.5	1,38	6.9

Crop 10

Climate File Crop	"ae : a :(ROUNDNU	NUT/KIIARIF	Climate Static Planting date	tion : KURNO te : 1 August	KOL t		
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq. mm/det
Aug	1	init	0.40	2,22	22.2	28.8	0.00	0.0
Aug	2	init	0.40	2.20	22.0	29.1	0.60	0.0
Aug	3	dere	0.50	2.65	26.5	30.8	0.00	0.0
Sep	1	deve	0.70	3.57	35.7	33.1	0.26	2.6
Sep	2	dere	0.50	4,42	44.2	35.1	0.91	9.1
Sep	3	mid	1.00	4.69	46.9	32.2	1.47	14.7
Oct	1	mid	1.00	4.48	44.8	30.0	1.48	14.8
Oct	2	mid	1.00	4.26	42.6	27.4	1.52	15.2
Oct	3	milt	0.97	3.93	39.3	20.6	1.87	18.7
Nov	1	late	0.88	3.39	33.9	13.1	2.08	20.8
Nov	2	late	0.76	2,77	27.7	5.9	2.17	21.7
TOTAL					385.8	286.1		117.6

\sim			
	•		
~	 и.	- 4	

Climate Crop	File :	kum-av GROUNDN	UT/KHARIF	Climate St Planting d	ation : KURNa ate : 15 Aug	KOL ast		
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq. mm/de
Aug	2	init	0.40	2,20	11.0	14.5	0.00	0.0
Ang	3	init	0.40	2.12	21.2	30.8	0.00	0.0
Sep	1	in/de	0.45	2.30	23.0	33.1	0.00	0.0
Sep	2	deve	0.60	2.95	29.5	35.1	0.00	0.0
Sep	3	deve	0.80	3.75	37.5	32.2	0.53	5.3
Oct	1	de/mi	0.95	4.25	42.5	30.0	1.26	12.6
Oct	2	mid	1.00	4.26	42.6	37.4	1.52	15.2
Oct	3	mid	1.00	4.05	40.5	20.6	2.00	20.0
Nov	1	mid	1.00	3.85	38.5	13.1	2.54	25.5
Nov	2	late	0.94	3.42	34.2	5.9	2.83	28,3
Nov	3	late	0.82	2.91	29.1	4.1	2.49	24.9
Dec	i	late	0.70	2,42	12.1	1.2	2.18	10.9

Climate File : kurn-av Crop : GROUNDNUT/RABI			Climate St Planting	ation : KURN late : 15 Dec				
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq.
Dec	2	init	0,20	0,67	3.4	0.3	0.62	3.1
Dec	3	init	0.20	0.70	7.0	0.4	0,67	6.7
Jan	1	in/de	0.27	0.98	9.8	0.2	0.96	9.6
Jan	2	deve	0.47	1.78	17.8	0.0	1.78	17.8
Jan	3	deve	0.73	3.05	30.5	0.4	3.01	30.1
Feb	1	de/mi	0.93	4.21	42.1	0.9	4.12	41.2
Feb	2	bine	1.60	4.85	48.5	1.3	4.72	47.2
Feb	3	mid	1.00	5.19	51.9	1.1	5.08	50.8
Mar	1	mid	1.00	5.52	55.2	0.8	5.44	54.4
Mar	2	late	0.94	5.51	55.1	0.5	5.46	54.6
Mar	3	late	0.82	5.01	50.1	1.3	4.87	48.7
Apr	1	late	0.70	4.45	22.2	1.1	4.23	21.2
Crop 13

Climate Crop	File :	GROUNDN	UT/RABI	Climate St. Planting	DOL.			
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	iRReq. mu/day	IRReq mm/de
Jan	1	init	0.20	0.73	7.3	0.2	0.72	7,2
Jan	2	init	0.20	0.76	7.6	0.0	0.76	7.6
Jan	3	dere	0.33	1.39	13.9	0.4	1.34	13.4
Feb	1	dere	0,60	2.70	27.0	0.9	2.62	26.2
Feb	2	dere	0.87	4.20	42.0	1.3	4.07	40.7
Feb	3	mid	1,00	5.19	51.9	1.1	5.08	50,8
Mar	1	mid	1.00	5.52	55.2	0.8	5.44	54,4
Mar	2	mid	1.00	5.86	58.6	0.5	5.81	58.1
Mar	3	mai/It	0.97	5.92	59.2	1.3	5.79	57.9
Apr	1	late	0.88	5.59	55.9	2.1	5.38	53.8
Apr	2	late	0.76	5.02	50.2	2.9	4.72	47.2

Crop 14

Climate Crop	File :	GROUNDN	UT/RABI	Climate St. Planting	ation : KURN Inte : 15 Jao	DOL	_	
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff. Rais mm/dec	IRReq. mm/day	IRReq. mm/dec
Jan	2	init	0.20	0.76	3.8	0.0	0.76	3.8
Jan	3	init	0.20	0.83	8.3	0.4	0.79	7.9
Feb	1	in/de	0.27	1.20	12.0	0.9	1.11	11.1
Feb	2	deve	0,47	2.26	22.6	1.3	2.13	21.3
Feb	3	deve	0.73	3.80	38.0	1.1	3.70	37.0
Mar	1	de/mi	0.93	5.16	51.6	0.8	5.08	50.8
Mar	2	mid	1.00	5.86	58.6	0.5	5.81	58.1
Mar	3	mid	1.00	6.11	61.1	1.3	5.97	59.7
Apr	1	mid	1.00	6.35	63.5	2.1	6.14	61.4
Apr	2	Inte	0.94	6.20	62.0	2.9	5.91	59.1
Apr	3	late	0.82	5.70	57.0	6.3	5.07	50.7
May	i	late	0,70	5.20	26.0	4.8	4.23	21.1

Canona 1	

Climate Crop	File :	KURN-AV SORGHUM	Cli	mate Station : nting date :	KURNOOL 15 July			
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	1RReq. mm/day	IRReq.
Jul	2	init	0.40	2.22	11.1	14,1	0.00	0.0
Jul	3	unit	0.40	2.22	22.2	28.5	0.00	0.0
Aug	1	in/de	0.45	2.48	24.8	28.8	0.00	0.0
Aug	2	dere	0.59	3.23	32.3	29.1	0.32	3.2
Aug	3	dere	0.78	4.11	31.1	30.8	1.03	10.3
Sep	1	deve	0.96	4.92	49.2	33.1	1.60	16.0
Sep	2	de/mi	1.10	5.42	54.2	35.1	1.90	19.0
Sep	3	mid	1.15	5.40	54.0	32.2	2.18	21.8
Oct	1	mid	1.15	5.15	51.5	30.0	2.15	21.5
Oct	2	milt	1.10	4.67	46.7	27.4	1.93	19.3
Oct	3	late	0.93	3.78	37.8	20.6	1.73	17.3
Nov	1	late	0.72	2,76	27.6	13.1	1.45	14.5
Nov	2	late	0.50	1.82	9,1	3.0	1.23	6.1

Crop 16

Climate Crop	File :	KURN-AV SORGHUM	Cia	mate Station : nting date :	KURNOOL Asgust			
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq.
Aug	1	init	0,40	2.22	22.2	28.8	0.00	0.0
Aug	2	init	0.40	2.22	22.0	29.1	0.00	0.0
Aug	3	deve	0.49	2.62	26.2	30.8	0.00	0.0
Sep	1	deve	0.68	3.48	34.8	33.1	0.17	1.7
Sep	2	deve	0.87	4.27	42,7	35.1	0.75	7.5
Sep	3	dere	1.06	4.96	49.6	32.2	1.74	17.4
Oct	1	mid	1.15	5.15	51.5	30.0	2.15	21.5
Oct	2	mid	1.15	4,90	49.0	27.4	2.16	21.6
Oct	3	mid	1.15	4.66	46.6	20.6	2.60	26.0
Nov	1	late	1.04	4.01	40.1	13.1	2.70	27.0
Nov	2	late	0.83	3.00	30.0	5.9	2.41	24.1
Nov	3	late	0.61	2.1	21.6	4.1	1.74	17.4

Crop 17

Climate Crop	File :	KURN-AV SUGARCA	NE-AVE	Climate Sta Planting da	tion : KURNO de : 1 Janua	0L 17		
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq. mm/dec
Jan	1	init	0.95	3.48	34.8	0.2	3.47	34.7
Jan	2	init	0.95	3.63	36.3	0.0	3.63	36.3
Jan	3	amit	0.95	3.96	39.6	0.4	3.91	39.1
Feb	1	init	0.95	4.28	42.8	0.9	4.19	41.9
Feb	2	init	0.95	4.61	46.1	1.3	4.47	44.7
Feb	3	init	0.95	4.93	49.3	LL	4.82	48.2
Mar	1	init	0.95	5.25	\$2.5	0.8	5.17	51.7
Mar	2	imit	0.95	5.57	55.7	0.5	5.51	55.1
Mar	3	init	0.95	5.80	58.0	1.3	5.67	56.7
Apr	1	deve	0.95	6.04	60.4	2.1	5.82	58.2
Apr	2	deve	0.95	6.27	62.7	2.9	5.98	59.8
Apr	3	deve	0.95	6.60	66.0	6.3	5.97	59.7
May	1	deve	0.95	7.96	70.6	9.7	6.09	60.9
May	2	deve	0.95	7.45	74.5	13.1	6.14	61.4
May	3	deve	0.95	7.11	71.1	15.7	5.54	55.4
Jun	ī	deve	0.95	6.71	67.1	18.4	4.87	48.7
Jun	2	dere	0.95	6.44	64.4	21.1	4.33	43.3
Jun	3	deve	0.95	6.09	60.9	23.5	3.74	37.4
Ind	1	mid	0.95	5.67	56.7	25.9	3.08	30.8
Jul	2	mid	0.95	5.28	52.8	28.3	2.46	24.6
Inl	3	mid	0.95	5.26	52.6	28.5	2.41	24.1
Aug	- i	mid	0.95	5.28	52.8	28.8	2.40	24.9
Aug	- 2	mid	0.95	5.23	52.3	29.1	2.32	23.2
Aug	3	mid	0.95	5.04	50.4	30.8	1.96	19.6
Sea	- i -	mid	0.95	4.85	48.5	33.1	1.54	15.4
Sem	- i -	mid	0.95	4.66	46.6	35.1	1.15	11.5
Sen	- <u>5</u> -	mid	0.95	4.46	44.6	32.2	1.24	12.4
Oct	- i -	late	0.95	4.25	42.5	30.0	1.26	12.6
Oct		late	0.95	4.65	40.5	27.4	1.31	13.1
Oct	- <u>î</u>	late	0.95	3.85	38.5	20.6	1.79	17.9
Nov	- i -	late	0.95	3.65	36.5	13.1	2.35	23.5
Nov	- 2	late	0.95	3.46	34.6	5.9	2.86	28.6
Nov	- 3 -	late	0.95	3.37	33.7	4.1	2.96	29.6
Der	- i -	late	0.95	3.28	32.8	2.3	3.05	30.5
Der	;	Inte	0.95	3.19	31.9	0.5	3.14	11.4
	- t -	late	0.95	1.14	11.4		1 10	11.0

APPENDIX 4.1

IRRIGATION SCHEDULING RUNS

Indicative Irrigation Schedules:

Groundaut

Run 1	:	Optimal Irrigation
Run 2	:	Application of 40 mm after 40 mm depletion
Run 3	:	Application of 40 mm every 7 days
Run 4	:	Application of 40 mm every 10 days
Run 5	:	Application of 45 mm every 10 days
Run 6	:	Application of 45 mm every 10 days starting 40th day
Run 7	:	Same as Run 6 for Light Soil
Run 8	:	Same as Run 6 for Heavy Soil
Cotton		
Run 1	:	Optimal Irrigation
Run 2		Application of 80 mm after 80 mm depletion
Run 3	:	Application of 80 mm every 20 days after 81st day
Run 4	:	Application of 70 mm every 20 days after 81st day
Run 5		Four applications of 70 mm after day 100
Run 6	:	Same as Run 5 for Medium Soil
Run 7	:	Same as Run 5 for Light Soil
Run 8	:	Same as Run 5 for Dry Year
Run 9	:	Same as Run 5 for Wet Year
Run 10	:	Three applications (70) after day 120 for Wet Year

		IRRI	GATION S	CHEDULIN	NG	GRO	UNDNUT/	RABI 15 D	ecember		
Chanale S	cabod	: KU	CNOOL		Cha	sate File		: kurp-av			
Crop		: GRO	DUNDNUT/	RABI	Plan	ting date		: 15 Deces	aber		
Soil		: Red	Sandy Loa		Ava	lable Sou	moist	: 140 mm			
Irrication	Options	selected :									
Timing Applicat	Son :	Irrigation a Irrigation u	pplied at 10 p to Field 0	0 % Readii Capacity	ly Атайа	ible Mois	L				
No.	Int	Date	Stage	Deplet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days		1.1	5	5	5	-	-	19.00	-	L/s/ha
1	39	24 Jan	в	51	100	100	48.9	0.0	0.0	69.9	0.21
2	16	10 Feb	c	53	100	100	59.0	0.0	0.0	\$4.3	0.61
3	12	22 Feb	с	51	100	100	57.2	0.0	0.0	\$1.7	0.79
4	11	3 Mar	с	51	100	100	56.7	0.0	0.0	\$1.0	0.85
5	11	14 Mar	D	53	100	100	59.9	0.0	0.0	85.5	0,90
6	11	25 Mar	D	51	100	100	56.9	0.0	0.0	\$1.3	0.86
END	11	6 Apr	Ð	41	100	100				_	
Total Gr	as Irrieal	ion .	451.5 m		Tota	Rainfal		10.0 mm			
Total Net	Irrientio		338.6 mg		Effe	ctive Rais		9.5 mm			
Total Irri	gation La	65465	0.0 mm		Tota	Rain Le	166	0.5 mm			
Efficiency	Irr. Sch	edule	100.0 5		Effe	Seacy Ra	in .	95 %			
Deficiency	Irr. Sch	edule	0.0 %								

Groundnut : Run 2

	IRRIGATION SCHEDULING	GROUNDNUT/RABI 15 De	cember
Climate Station	: KURNOOL	Climate File : kurn-av	
Crop	: GROUNDNUT/RABI	Planting date : 15 Decen	iber
Soil	: Red Sandy Leam	Available Soilmoist : 140 mm/	
Irrigation Options	uterted -		

Tuning Application

: Fixed depletion of 40 mm : Fixed Irrigation depth of 40 mm

No. Irr.	las days	Date	Stage	Deplet %	тх \$	ETA %	NetDep.	Deficit	Loss	GrDep.	Flow L/s/ha
1	36	21 Jan	в	43	100	100	40.0	0.0	0.0	57.1	0.18
2	13	4 Feb	B	39	100	100	40.0	3.2	0.0	57.1	0.51
3	9	13 Feb	с	38	100	100	40.0	2.5	0.0	57.1	0.73
4	9	22 Feb	c	-40	100	100	40.0	5.1	0.0	57.1	0.73
5	7	29 Feb	c	36	100	100	40.0	0.1	0.0	57.1	0.94
6	8	7 Mar	с	39	100	100	40.0	3.4	0.0	57.1	0.83
7	7	14 Mar	D	37	100	100	40.0	1.2	0.0	57.1	0.94
8	8	22 Mar	p	39	100	100	40.0	4.0	0.0	57.1	0.83
9		1 Apr	P	38	100	100	40.0	2.3	0.0	57.1	0.83
END	6	6 Apr	D	21	100	100					
Total Gre	as Irrigat	ion	514.3 mm		Tota	Raiofal		10.0 mm			
Total Net	Irrigation		360.0 ms		Effe	ctive Rais		10.0 mm			
Total Irri	gation Lo	5545	0.0 mm		Tota	Rain L	83	0.0 mm			
Efficiency	Irr. Sch	dule	100.0 %		Effe	ciency Ra	in .	100 %			
Deficienc	Irr. Sch	edule	0.0 5								

		IRRI	GATION S	CHEDULI	NG	GRO	UNDNUT/I	CABI 15 D	scember		
mane 5	Lacion .	T KUP	ENOUL		Cam	sate rite		: Kurn-av			
rep		: 680	UNDNUT	KABI	Plan.	ting date		: 15 Deces	aber		
NOL		TRed	Sandy Loa		A14	TTON SON	an-oast	1 140 8180			
mination	Options	selected :									
Timing	1	Fixed later	al of 7 (A	7 (8)/ 7	(C)/ 7	(D) days.					
Applicat	ion t	Fixed Irriga	tion depth	of 40 mm							
No.	Int	Date	Stage	Deplet	тх	ETA	NetDen.	Deficit	Los	GrDen.	Flow
Irr.	days			*	5	ч.	mm	01.00	0.03	11.00	L/s/ba
1	7	22 Dec	٨	9	100	100	40.0	0.0	35.6	57.1	0.94
2	7	29 Dec	A	7	100	100	40.0	0.0	35.5	57.1	0.94
3	7	6 Jan	в	9	100	100	40.0	0.0	33.5	57.1	0.94
4	7	13 Jan	в	ii	100	100	40.0	0.0	30.9	57.1	0.94
5	7	20 Jan	в	14	160	100	40.0	0.0	27.5	57.1	0.94
6	7	27 Jan	в	21	100	100	40.0	0.0	18.9	57.1	0.94
7	7	4 Feb	в	23	100	100	40.0	0.0	14.6	57.1	0.94
8	7	11 Feb	с	26	100	100	40.0	0.0	10.5	57.1	0.94
9	7	18 Feb	С	29	100	100	40.0	0.0	7.7	57.1	0.94
10	7	25 Feb	с	31	100	100	40.0	0.0	5.0	57.1	0.94
11	7	2 Mar	с	32	100	100	40.0	0.0	3.7	57.1	0.94
12	7	9 Mar	с	34	100	100	40.0	0.0	2.3	57.1	0.94
13	7	16 Mar	D	34	100	100	40.0	0.0	1.8	57.1	0.94
14	7	23 Mar	D	33	100	100	40.0	0.0	3.3	57.1	0.94
15	7	1 Apr	D	31	100	100	40.0	0.0	5.8	57.1	0.94
END	6	6 Apr	D	19	160	100					
otal Gro	ss Irrigat	ion	857.1 ms		Tota	Rainfall		10.0 mm			
otal Net	Irrigatio		600.0 ms		Effe	ctive Rais		8.9 mm			
iotal Irrig	ration Lo	6565	236.5 mm		Tota	Rain Lo	224	1.1 mm			
ficiency	Irr. Sch	dule	60.6 %		Effs	iency Ra	ie i	88.9 %			
Anciency Irr. Schedule		adula	0.0 %								

IRRIGATION SCHEDULING GROUNDNUT/RABI 15 December 1 KURNOOL **Climate Station Climate File** : kam-av Crop : GROUNDNUT/RABI Planting date Available Soilmoist : 15 December Soil : Red Sandy Learn : 140 mm/m Irrigation Options selected : Timing : Fixed Interval of 10 (A)/ 10 (B)/ 10 (C)/ 10 (D) days. : Fixed Irrigation depth of 40 mm Application No. Int Date Stage Deplet τх ETA NetDep. Deficit Less GrDep Flow Irr. days τ • ۰. ---11.00 L/s/ha 1 10 25 Dec 100 100 40.0 8.8 33.7 57.1 0.66 A 11 5 Jan 2 10 A 12 100 100 40.0 8.8 31.9 57.1 0.66 3 10 15 Jan в 16 100 100 40.0 8.0 26.3 57.1 0.66 4 10 25 Jan в 24 100 100 40.0 0.0 16,1 \$7.1 0.66 5 32 40.0 8.8 4.5 57.1 0.66 18 5 Feb в 100 100 10 15 Feb ē 100 40.0 3.9 0.0 57.1 0.66 6 39 100 7 10 25 Feb 47 100 100 40.0 12.6 0.0 57.1 0,66 8 10 5 Mar 58 94 99 48.0 24.6 0.0 0.66 9 10 15 Mar ñ 67 72 94 40.0 35.5 0.0 57.1 0.66 10 10 25 Mar D 72 62 88 40,8 40.4 0.0 57.1 0.66 11 10 5 Apr n 71 63 87 40.0 39.6 0.0 \$7.1 0.66 END 1 6 Apr D 35 63 0 Total Gross Irrigation 628.6 mm Total Rainfall 10.0 mm Total Net Irrigation 440.0 mm Effective Rain 10.0 mm **Total Irrigation Losses** 112.6 mm Total Rain Loss 0.0 mm Efficiency Irr. Schedule 74.4 % Efficiency Rain 100 % **Deficiency Irr. Schedule** 4.2 % YIELD REDUCTIONS Stage A в D Season **Reductions in ETC** 0.0 0.0 0.2 12.7 4.2 **Yield Response factor** 0.40 0.60 1.90 0.80 0.80 Reductions in Yield Cumulative Yield reduct. 0.2 10.2 3.4 0.0 0.0 5

0.0 0.0 0.2 10.3 -

Groundnut :

Run 4

		IRRI	GATION S	CHEDULIN	G	GROU	NDNUTA	RABI 15 D	ecember		
Climate S	lation	: KU	INOOL		Clim	ate File		: kurn-av			
Crep		: GR(UNDNUT	RABI	Plant	ing date		: 15 Decer	nber		
Soil		: Red	Sandy Loa	m	Avai	able Soils	noint.	: 140 mm	-		
Irrigation Timing Applicat	Options : ion :	selected : Fixed later Fixed Irrigi	ral of 10 () stion depth	4)/ 10 (B)/ of 45 mm	10 (C)/	10 (D) &	aya.				
Ne.	Int	Date	Stage	Depiet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days			5	5	5	-	-	-		Lisha
1	10	25 Dec		11	100	100	45.0	8.8	38.7	64.3	0.74
2	10	5 Jan	Ä	12	100	100	45.0	0.0	36.9	64.3	0.74
1	10	15 Jan		16	100	100	45.0	0.0	31.3	64 3	0.74
ā.	10	25 Iam		24	100	100	45.0		25.5	64.3	0.74
-	10	5 Feb		11	100	100	45.0			64.3	0.74
č.	10	15 Fab	č	39	100	100	45.0		11	64.3	0.74
;	10	25 Feb	č	43	100	100	45.0	1.7	0.0	64.3	6.74
	10	5 Mar	č	60	100	100	45.0	11.1		64.3	0.74
	10	15 Mar	D	58	93	99	45.0	20.0	0.0	64.3	0.74
10	10	25 Mar	D	62	82	97	45.0	35.0	0.0	64.3	0.74
11	10	5 Apr	D	62	81	97	45.0	24.1	0.0	64.3	0.74
END	1	6 Apr	D	21	83	0					
Total Gra	es lovies	lion	707.1		Tata	Reinfall		10.0 mm			
Total Net	Irriantia		495.0 m	-	File	tine Rain		10.0 mm			
Total Irri	gation Lo	eses	138.7 m		Total	Rain Lo	55	0.0 mm			
Efficience	Irr. Sch	adule	72.0 %		File	inery Rai		100 %			
Deficiency	Irr. Sch	edule	0.8 %								
YIELD REDUCTIONS		Stage	АВ	с	D	Season					
Reduction	n in ETC				0.0	1.5	0.8				
Yield Re	trente fa	ctor		40 0.66	1.00	0.80	0.80				
Reduction	a in Yield			.0 0.0	0.0	2.0	0.6	5			
Cumulat	we Yield	reduct.		0 0.0	0.0	2.0		5			

		1200	CATION	CHE		c .	CROI	NINITA				
			GATION	SC III	DULIN		GRUU	NDNUIM	CABI 15 D	ecember .		
Climate S	tation	: KUR	NOOL			Clim	ate File		: kurn-av			
Crop		: GRO	JUNDNU	T/RAI	a	Plant	ing date		: 15 Deces	nber		
Soul		: Ked	Sandy Lo	4075		Avai	able Soils	moust	: 140 mm	-		
Timing Applicat	Options i ion i	selected : Dates define Fixed Irriga	nd by used	-/ 40 i of 45	54/ 60 mm	/ 70 / 8	0 / 90 /10	•				
No.	Int	Date	Stage	D	piet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days				Ś.	5	5	-	mm	550	-	L/s/ha
1	40	25 Jan	в		53	100	100	45.0	7.0	0.0	64.3	0.19
2	10	5 Feb	8		38	100	100	45.0	0.0	2.6	64.3	0.74
3	10	15 Feb	C		39	100	100	45.0	0.0	1.1	64.3	0.74
4	10	25 Feb	č		43	100	100	45.0	3.7	0.0	64,3	0.74
5	10	5 Mar	C		50	100	100	45.0	11.1	0.0	64.3	0.74
6	10	15 Mar	p		58	93	99	45.0	20.0	0.0	64.3	0.74
7	10	25 Mar	D		62	82	97	45.0	25.0	0.0	64.3	0.74
END	11	6 Apr	D		62	83	97					
Total Gre	ss Irrira	ting	450.0 #			Total	Rainfall		10.0 mm			
Total Net	Irrigatio	0	315.0 m	192		Effec	tive Rain		10.0 mm			
Total Irri	gation Lo	155415	3.7 m			Total	Rain Lo	18	0.0 mm			
1041 Wei Friggiood 315,0 mm Enterwe Ram 10,0 mm Tetal Friggion Losses 3.7 mm Tetal Rain Loss 0.0 mm Efficiency Irr, Schedule 96.8 % Efficiency Rain 100 %												
Deficienc	frr. Sch	edule	0.8 %									
VIELD R	EDUCTI	ONS	Stage	A	8	с	D	Season				
Reduction	s in ETC			0.0	0.0	0.0	2.5	0.5	5			
Yield Re	sponse fa	ctor		0.40	0.60	1.00	0.80	0.80				
Reduction	s in Yiel	4		0.0	0.0	0.0	2.0	0.6	5			
Cumulat	ive Yield	reduct.		0.0	0.0	0.0	2.0		5			

		IRRJ	GATION S	CHEDULIN	G GROUNDNUT/RABI 15 December						
Climate S Crop Soil	Timate Station : D Prop : C foil : P rrigation Options selected Timing : Dates de		INOOL JUNDNUTA Sand	RABI	Climate File Planting date Available Soilmaist		: kurn-av : 15 Decer : 100 mm	nber m			
Timing Applica	1	Dates defin Fixed Irriga	ed by users ation depth	40 / 50/ 60 of 45 mm	/ 70 / 8	0 / 90 /10	0				
No. Irr.	Int days	Date	Stage	Deplet %	TX %	ETA %	NetDep.	Deficit	Loss	GrDep.	Flow L/s/ha
1	40	25 Jan	8	69	68	93	45.0	3.3	0.0	64.3	0.19
2	10	5 Feb	B	48	100	100	45.0	0.0	6.2	64.3	0.74
3	10	15 Feb	с	55	100	100	45.0	0,0	1.1	64.3	0.74
4	10	25 Feb	č	60	91	99	45.0	3.2	0.0	64.3	0.74
5	10	5 Mar	č	67	76	96	45.0	8.7	0.0	64.3	0.74
6	10	15 Mar	D	73	63	92	45.0	13.4	0.0	64.3	0.74
7	10	25 Mar	D	74	60	89	45.0	14.2	0.0	64.3	9.74
END	n	6 Apr	D	70	68	92	4014				
Total Gri Total Net Total Irri	iss Irrigatio Irrigatio	tion n 16565	450,0 mi 315.0 mi 7,3 mi	n n	Total Effec Total	l Rainfall tive Rain I Rain Lor	55	10.0 mm 10.0 mm 0.0 mm			
Efficiency Deficienc	y Irr. Sch y Irr. Sch	edule edule	97.7 % 5.1 %		Effic	iency Rain		160 %			
YIELD R	EDUCTI	ONS	Stage	A B	с	D	Season				
Reduction	us in ETC		0	.0 4.0	1.4	10.9	5.1	*			
Yield Re	sponse fa	ctor	0	.40 0.60	1.00	0.80	0.80				
Reduction	as in Yiek	1	0	.0 3.0	1.4	8.7	4.0	4			
Cumulat	ive Yield	reduct.	0	.0 3.0	4.3	12.6		5			

		IRRI	ATION SC	HEDULI	*G	GRO	UNDNUT/F	AB1 15 D	cember		
Climate S	tation	: KUF	NOOL		Clim	iate File		: kurn-av			
Crop		: GRO	UNDNUT/	RABI	Plan	ting date		: 15 Deces	aber		
Sail		: Red	Loam		Avai	itable Soil	moist	: 180 mm/	80		
Irrigation	Options	selected :									
Timing Applicat	ion :	Dates define Fixed Irriga	d by user:/ tino depth	40 / 50 / 6 of 45 mm	0/70/	80 / 90 /1	00				
No.	Int	Date	Stage	Deplet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days		-	%	%	*	11100	mm	mm	et ins	L/s/ha
1	40	25 Jan	в	41	100	100	45.0	7.0	0.0	64.3	0.19
2	10	5 Feb	в	29	100	100	45.0	0.0	2.6	64.3	\0.74
3	10	15 Feb	с	30	100	100	45.0	0.0	1.1	64.3	0.74
4	10	25 Feb	с	34	100	100	45.0	3.7	0.0	64.3	0.74
5	10	5 Mar	с	39	100	100	45.0	11.1	0.0	64.3	0.74
6	10	15 Mar	D	45	100	100	45.0	20.4	0.0	64.3	0.74
7	10	25 Mar	D	50	100	100	45.0	26.8	0.0	64.3	0.74
END	11	6 Apr	Ð	50	160	100					
Total Gro	as Irriga	tion	450.0 mm		Tota	l Rainfal		10.0 mm			
Total Net	Irrigatio		315.0 mm		Effe	ctive Rain		10.0 mm			
Total Irri	gation L	04565	3.7 mm		Tota	d Rain L		0.0 mm			
Efficiency	officiency Irr. Schedule		98.8 %		Effic	iency Ra	in .	100 %			
Deficiency	belicioney Icr. Schoolule		0.0 %								

Cotton : Run 1

			IRRIGAT	TON SCH	EDULIN	G	COTTO	N 1 August			
Climate S Crop Suil	lation	: KU : CO : Blac	NOOL TON k Clay Seil		Clin Plan Ava	nate File sting date Bable Soil	moist	: kurn-er : 1 August : 200 mm/			
Irrigation Timing Applicat	Options 1 Son 2	selected : Errigation a Fixed Erriga	pplied at 10 tion depth	0 % Readi of 45 mm	ly Avail	able Mois					
Ne. Irr.	Int days	Date	Stage	Deplet %	TX %	ETA S	NetDep.	Deficit	Loss	GrDep.	Flow
1 END	130 51	10 Dec 1 Feb	C D	61 55	100 100	100 100	171.3	0.0	0.0	244.8	0.22
Total Gre Total Net Total Irri	otal Gross Irrigation otal Net Irrigation otal Irrigation Losses				Tota Effe	al Rainfall ctive Rain al Rain Lo	-	366.9 mm 270.5 mm 96.4 mm			
Efficiency Irr. Schedule Deficiency Irr. Schedule			100.0 %		Eff	ciency Ra	•	73.7 %			

			IRRIGAT	TON SCH	DULIN	G	COTTO	V 1 August			
Climate S Crop Soil Irrigation Timing Applicat	Options	: KUI : COI : Blac selected : Fixed deple Fixed Irrig	ton of 80 m	um of \$0 mm	Clin Plan Avai	ate File ting date lable Soil	moint	: kurn-av : 1 August : 200 mm/s	•		
No. Irr.	Int days	Date	Stage	Deplet	TX S	ETA S	NetDep.	Deficit	Loss	GrDep.	Flow L/s/ha
1	103	13 New	с	29	100	100	80.0	0.3	0.0	114.3	0.13
2	23	6 Dec	с	29	100	100	80.0	0.5	0.9	114.3	0.58
3	23	29 Dec	D	29	100	100	80.0	0.1	0.0	114.3	0.58
4	28	27 Jaa	D	29	100	100	80.0	0,2	0.0	114.3	0.47
END	- 4	1 Feb	D	3	100	100			_		
Total Gre	es Irrigat	ios	457.1 ma		Teta	Rainfall		366.9 mm			
Total Net	otal Net Irrigation 320.0 mm				Effective Rain			266.6 mm			
fotal Irri	otal Irrigation Losses 0.0 m				Tota	Rain Lo	- 88	100.3 mm			
Efficiency	Irr. Sch	shale	100.0 %		Eff	siency Rai	ia i	72.7 %			
Deficience	beficiency Irr. Schedule 0.0 %										

Cotton : Run 3

			IRRIGAT	ION SCIII	DULIN	G	COTTO	i 1 August			
Climate S	lation	: KU	LOOL		Clia	ate File		: kum-av			
Crop		: CO1	TON		Plan	ting date		: 1 August			
Soil		: Blac	k Clay Soil		Avai	lable Soil	imoist	: 200 mm/	202		
Irrigation	Options	selected :									
Timing		Fixed Inter-	al of 100 (W100 (B)/	20 (C)/	20 (D) da	N1.				
Applicat	ion :	Fixed Irriga	ution depth	of 80 mm							
Ne.	lat	Date	Stage	Deplet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days			\$	%	%	88	0000	84.00	-	L/s/ha
1	81	21 OC1	с	10	100	100	80.0	0.0	52.8	114.3	0.16
2	20	11 Nov	с	17	100	100	80.0	0.0	31.0	114,3	0.66
3	20	1 Dec	с	24	100	100	80.0	0.0	12.5	114.3	0.66
4	20	21 Dec	D	25	100	100	80.0	0.0	9.8	114.3	0.66
5	20	11 Jan	D	23	100	100	80.0	0.0	15.6	114.3	0.66
END	20	1 Feb	D	18	100	100					
Total Gre	es Irrisa	tion	571.4 m		Tota	I Rainfal		366.9 mm			
Total Net	Irrigatio		400.0 mm		Effe	ctive Rain		266.2 mm			
Total Irri	gation Lo	15565	121,7 mm		Tota	d Rain Lo	100	160.7 mm			
Efficiency	Irr. Sch	edule	69.6 %		Effe	iency Ra	io	72.6 %			
Deficiency	Irr. Sel	edule	0.0 %								

Cotton : Run 4

			IRRIGAT	TON SCILL	DULIN	G	COTTO?	1 August			
Climate S	tation	: KUF	INOOL		Clin	tate File		t kuns-av			
Crop		: CO1	TON		Plan	ting date		: 1 August			
Soil		: Blac	k Clay Soil		Ava	lable Soi	hmoist	: 200 mm/	m		
Irrigation	Options	selected :									
Timing		Fixed Interv	ral of 100 (.	AV100 (B)/	20 (C)/	20 (D) da	WK.				
Applicat	ion i	Fixed Irriga	ation depth	of 70 mm							
No.	let	Date	Stare	Deplet	TX	ETA	NetDep.	Deficit	Less	GrDen.	Flow
Irr.	days			5	5	5	mæ	104.00	100.003	man.	L/s/ha
1	81	21 OCt	с	10	100	100	70.0	0.0	42.8	100.0	0.14
2	20	11 Nov	с	17	160	100	70.0	0.0	21.0	100.0	0.58
3	20	1 Dec	с	24	100	100	70.0	0.0	2.5	100.0	0.58
4	20	21 Dec	D	25	100	100	70.0	0.2	0.0	100.0	0.58
5	20	11 Jan	D	23	100	100	79.9	0.0	5.4	100.0	0.58
END	20	1 Feb	D	18	100	100					
Total Gra	a loies	tion	500.0 m		Tota	d Rainfal		366.9 mm			
Total Net	Cotal Not Irrivation				Effe	ctive Rai		266.2 mm			
Total Irri	gation Lo	isses	71.7 mm		Tota	d Rain L	065	100.7 mm			
Efficiency	Irr. Sch	edule	679.5 %		Effe	iency Ra	uint .	72.6 %			
Deficiency	Irr. Sch	edule	0.0 %								

119

IRRIGATION SCHEDULING COTTON 1 August : KURNOOL Climate Station Climate File : kurn-av Crop : COTTON Planting date : 1 August Available Soilmoist : 200 mm/m Soil : Black Clay Soil Irrigation Options selected : Timing Timing : Dates defined by user :/100 /120 /140 /160 Application : Fixed Irrigation depth of 70 mm No. Int Date Stage Depiet TX ETA NetDen. Deficit Loss GrDen. Flore ler. 5 5 L/s/ba days 5 -88 mat 10 Nov 1 100 с 24 100 100 70.0 0.0 1.7 100.0 0.12 70.0 2 20 1 Dec 24 100 100 0.0 23 100.0 0.58 3 20 20 Dec D 25 100 100 79.0 9.6 0.0 100.0 0.58 â. 20 10 Jan D 23 100 100 70.0 0.0 4.4 100.0 0.58 END 21 1 Feb D 19 100 100 Total Rainfall Total Gross Irrigation 400.0 mm 366.9 mm Total Net Irrigation 280.0 mm Effective Rain 270.5 mm **Total Irrigation Losses** 8.3 mm Total Rain Loss 96.4 mm Efficiency Irr. Schedule 97.0 % Efficiency Rain 73.7 % 0.0 % Deficiency Irr. Schedule

Cotton : Run 6

			IRRIGAT	ION SCIEF	EDULIN	G	COTTON	N 1 August			
Climate S	tation	: KUF	INOOL		Clim	aute File		: kure-av			
Crog		: COT	TON		Flag	tion date		: 1 Autust			
Soil		: Sand	ly loam		Avai	ilable Soil	Impirt	: 140 mm/	-		
Irrigation	Options	selected :									
Timing Applicat	ion t	Dates define Fixed Irriga	nd by user 2 ation depth o	100 /120 /1 f 70 mm	140 /160	1		_			
No.	Lot days	Date	Stage	Depict	TX	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
	04.7.5		-	<u> </u>	~	<u> </u>	lana .	Rea .	-	Reason in concern	1/1-
1	100	10 Nov	c	35	100	100	79.9	0.0	1.7	100.0	0.12
2	20	1 Dec	с	35	100	100	70.0	0.0	2.3	100.0	0.58
3	20	20 Dec	D	36	100	100	70.0	0.6	0.0	100.0	0.58
4	20	10 Jan	D	33	100	100	70.0	0.0	4.4	100.0	0.58
END	21	1 Feb	D	27	100	100	_				
Total Gro	as Irrigat	ion	400.0 mm		Tota	d Rainfal		366.9 mm			
Total Net	Irrigation	4	280.0 mar		Effe	ctive Rais		350.0 mm			
Total Irrig	gation Lo	sses	8.3 mm		Tota	al Rain Lo	365	16.9 mm			
Efficiency	Irr. Seb	dule	97.0 %		Effe	ciency Ra	in .	95.4 %			
Deficiency	Irr. Sch	edule	0.0 %								

Cotton : Run 7

			IKRIGAT	ion scin	SUULIN	6	COLIO	August 1			
imate S	tation	: KU	KNOOL		Chet	tate File		: kurn-av			
rop		: 00	TON		Plan	ting date		: 1 August			
ionii i		: Red	Sand		Ava	ilable Sod	moist	: 100 mm/			
rrigation	Options	selected :									
Timing		Dates defin	ed by user a	100 /120 /	140 /160						
Applicat	ion :	Fixed Irrig	ation depth a	of 70 mm							
		-									
No.	Int	Date	Stage	Deplet	13	ETA	NetDep.	Deficit	Loss	GrDep.	P10W
Irr.	days			\$		4	mm	mm	mm	mæ	L/s/ba
1	100	16 Nov	с	49	100	100	78.8	0.0	1.7	100.0	0.12
2	20	1 Dec	с	48	100	100	78.0	0.0	2.3	100.0	0.58
3	20	20 Dec	D	50	100	100	70.0	0.6	0.0	100.0	0.58
4	20	10 Jan	D	47	100	100	70.0	0.0	4.4	100.0	0.58
END	21	1 Feb	D	38	100	100		_			
lotal Gre	as Irrient	lion	400.0 me		Tota	A Reinfall		166.9 mm			
latel Net	Irrigation		280 0 mm		File	ctive Rain		268 1 mm			
of al level	antion Lo		91 mm		Tota	t Pain Lo		69 9 mm			
- Int	gaundi 1.0		0.5 mm		100	a read LO		And inter			
fficiency Irr. Schedule		97.0 %		Effe	ciency Rai		73.1 %				
efficiency Irr. Schedule			00.0								

			IRRIGAT	ION SCHI	DULIN	G	сотто	1 August			
Climate S Crop Soil	tation	: KUF : COT : Blac	NOOL TON k Clay Soil		Clim Plan Ava	ate File ting date ilable Soi	moist	: kurn-dry : 1 August : 200 mm/			
Timing Applicat	Options : ion :	selected : Dates define Fixed Irriga	d by user : ation depth	/100 /120 / of 70 mm	140 /160			_			
No. Irr.	Int days	Date	Stage	Deplet %	TX %	ETA %	NetDep.	Deficit mm	Loss	GrDep.	Flow L/s/ha
1	100	10 Nov	с	41	100	100	70.0	45.8	0.0	100.0	0.12
2	20	1 Dec	с	42	100	100	70.0	46.9	0.0	100.0	0.58
3	20	20 Dec	D	42	160	100	70.0	48.1	0.0	100.0	0.58
4 END	20	10 Jan 1 Feb	D	34	100	100	70.0	43.2	0.0	100.0	0.58
Total Gre	s Irrigal	ion	400.0 ma		Teta	d Rainfal		240.1 mm			
fotal Net	Irrigatio		280.0 ma		Effe	ctive Rais		218.3 mm			
fotal Irrig	pation Lo	6665	0.0 mm		Tota	d Rain L	165	21.8 mm			
Efficiency	Irr. Sch	edule	100.0 %		Eff	ciency Ra	in	90.9 %			

Cotton

: Run 9

			IBBIC 17	TON COM		~	007700				
			INCIGA	ION SCH	DULIN	•	corro	A 1 August			
Climate S Crop Soil	tation	: KU : CO : Net	NOOL TON k Clay Seil		Сілі Палі Ата	tate File ting date lable Sol	havist	: kurn-wei : 1 August : 200 mm/	-		
Timing Applicat	Options : ion :	selected : Dates defin Fixed Irrig	ed by user : ntion depth	/100 /120 / of 70 mm	140 /164						
Ne. Irr.	lat days	Date	Stage	Depict %	TX S	ETA S	NetDep.	Deficit	Loss	GrDep.	Flow
1	100	10 Nov	c	16	100	190	70.0	0.0	25.6	100.0	0.12
2	20	1 Dec	c	23	190	190	70.0	0.0	6.8	100.0	0.58
3	20	20 Dec	D	25	100	100	70.0	0.0	0.9	100.0	0.58
4	20	10 Jan	Ð	23	100	100	70.0	0.0	5.3	100.0	0.58
END	21	1 Feb	Ð	19	100	100		_		_	
Total Gro	es Irrigat	ios	400.0 mm		Tota	Rainfal		513.3 mm			
Total Net	otal Net Irrigation				Effe	ctive Rai		317.5 mm			
Total Irro	gation Lo	4945	38.6 mm		Tota	d Rain L	065	195.8 mm			
Efficiency	Irr. Sch	edule	86.2 %		Eff	ciency Ra	in .	61.9 %			
Deficiency	Irr. Sch	edule	0.0 %								

			TRRICAT	TON SCH	DITIN	G	COTTO	1 America			
Climate S	tation	: KU	NOOL		Cia	ante File		: karn-wet			
Cron		1 COT	TON		Plan	time date		1 1 Aurest			
Soil		: Blac	k Clay Seil		Ava	lable Soil	moint	: 200 sem/			
Irrigation Timing Applicat	Options 1 ioa 1	selected : Dates defin Fixed Irrig:	nd by user : ation depth	/120 /140 / of 70 mm	160						
No.	Lat	Date	Stage	Deplet	TX	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
					-						
1	120	1 Dec	с	38	100	190	70.0	37.6	0.0	100.0	0.10
2	20	20 Dec	D	38	100	100	70.0	36.7	0.0	100.0	0.58
3	20	10 Jan	P	36	100	100	70.0	31.4	0.0	100.0	9.58
END	21	1 Feb	Ð	30	100	100			_		
Total Gra	es Irrical	ion	300.0 mm		Teta	d Rainfal		513.3 mm			
Total Net	Irrientio		210.0 mm		Effe	ctive Rais		317.5 mm			
Total Irri	Fotal Irrigation Losses			0.0 mm			160	195.8 mm			
Efficiency	Irr. Sch	edule	100.0 %		Efficiency Rain		61.9 %				
Deficiency	Irr. Sch	edule	0.0 %								

APPENDIX 4.2

EVALUATION OF IRRIGATION PRACTICES

- 1. Climate File 1986
- 2. Adjusted Sorghum File
- 3. Crop Water Requirements HYV Sorghum
- 4. Irrigation Schedule as practised by farmer
- 5. Adjusted Irrigation Schedule
- 6. Farmer's practice for average year

I. Climate File 1986

	ETo	Rainfall	Eff. Rain
	(mm/day)	(mm/month)	(mm/month)
January	3.8	0.0	0.0
February	4.9	0.0	0.0
March	5.9	0.0	0.0
April	6.6	0.0	0.0
May	7.6	25.0	23.8
June	6.8	50.0	45.0
July	5.7	75.0	63.8
August	5.5	100.0	80.0
September	4.9	8.0	7.9
October	4.3	107.0	84.1
November	3.6	67.0	58.0
December	3.4	0.0	0.0
YEAR Total	1912.8	432.0	362.5 mm

2. Adjusted Sorghum File

Crop data : HY	SORGHUM	Crop file	: hyv-sorg			
Growth Stage		Init	Devel	Mid	Late	Total
Length Stage	[days]	27	35	35	30	127
Crop Coefficient	[coeff.]	0.50	->	1.15	0.60	
Rooting Depth	[meter]	0.30	->	1.00	1.00	
Depletion level	[fract.]	0.50	->	0.50	0.80	
Yield-response F.	[coeff.]	0.60	0.60	1.20	0.80	1.00

3. Crop Water Requirements Sorghum

Climate Crop	File :	KURN-AV HYV Sorghi	um.	Climate Station Planting date	: KURNOOL 13 September			
Month	Dec	Stage	Coeff Kc	ETcrop mm/day	ETcrop mm/dec	Eff.Rain mm/dec	IRReq. mm/day	IRReq. mm/dec
Sep	2	init	0.50	2,46	17.2	24.6	0.00	0.0
Sep	3	init	0.50	2.35	23.5	32.2	0.00	0.0
Oct	1	init	0.50	2.24	22.4	30.0	0.00	0.0
Oct	2	deve	0.59	2.53	25.3	27.4	0.00	0.0
Oct	3	deve	0.78	3.16	31.6	20.6	1.10	11.0
Nov	1	deve	0.96	3.71	37.1	13.1	2.40	24.0
Nov	2	de/mi	1.10	4.02	49.2	5.9	3.42	34,2
Nov	3	mid	1.15	4.08	40.8	4.1	3.67	36.7
Dec	1	mid	1.15	3.97	39.7	2.3	3.74	37.4
Dec	2	mid	1.15	3.86	38.6	0.5	3.81	38.1
Dec	3	late	1.06	3.72	37.2	0.4	3.68	36.8
Jan	1	late	0.88	3.21	32.1	0.2	3.19	31.9
Jan	3	Inte	0.69	2.64	26.4	0.0	2.64	26.4

4. Irrigation Schedule as Practised by Farmer

Climate S	Ration	z KU	NOOL		Clie	nate File		: karp-86			
Crop : IIYV Sorghum				Plan	ting date		: 13 Septer	aber			
Soil		: Red	Clay		Avai	itable Soi	Incist	: 180 mm/			
				Initial Soilmoist			nist.	: 180 mm/s	-		
Irrigation Options selected :											
Timing : Dates defined by user at 72 / 93 /114											
Applica	tion :	Fixed Irrig	tion depth	of 70 mm							
Field Am	diration 1	Winterson 7	145								
in the second second		ATRAILY /	-			-	_			-	
Na.	Int	Date	Stage	Deplet	тх	ETA	NetDep.	Deficit	Loss	GrDep.	Flow
Irr.	days		•	5	5	5	240	31.60	86.03	10.40	Links
1	72	25 Nov	с	27	100	100	70.0	0.0	21.4	106.0	0.16
2	21	16 Dec	с	39	100	100	78.0	0.0	0.3	100.0	0.55
3	21	7 Jan	Ð	42	100	100	78.6	5.1	0.0	100.0	0.55
END	14	21 Jan	D	23	100	100					
Total Gr	ast Irrigat	ion	300.0 mm		Tota	Rainfal		184.4 mm			
Total Net	Irrigation		210.0 mm		Effe	ctive Rai		182.5 mm			
Total Irri	igation Lo	6565	21.7 ma		Tota	d Rais L	840	2.0 mm			
Moist De	ficit at ha	rrest	41.1 mm								
Net Supp	ly + Soil	retention	251.1 mm	•							
Actual W	ater use l	7 CTSP	411,9 mm		Acta	al Irr.R.		229.4 mm			
Potential	Water us	e by crop	411.9 mm								
Efficience	Irr. Sch	edule	89.7 %		Effe	ciency Ra	ie .	98.9 %			
Deficient	r Irr. Sch	edule	0.0 %								

5. Adjusted Schedule

		19	CKIGATIO:	SCIEDU	LING	11	TV Sorghu	m 13 Septem	aber		
Climate Station : KURNOOL Cross : HVV Surphum					Cim	ate File		: kurs-86	nher .		
Soil : Red Clay			Available Soilmoist		moint	: 180 mm/	-				
Irrigation Options selected : Tening : Dates defined by user :/ \$0 /101 Application : Fixed Irrigation depth of 70 mm				Incla Someth		-		-			
No.	Int days	Date Date	Stage	Deplet %	TX S	ETA S	NetDep.	Deficit	Loss	GrDep.	Flow L/s/ha
1	80	3 Dec	с	41	100	100	70.0	3.4	0.0	108.0	0.14
2 END	21 27	24 Dec 21 Jan	D D	44 50	100 100	100 100	70.0	8.6	0.0	100.0	0.55
Total Gr	oss brrigat	ion	200.0 mm		Teta	Rainfal		184.4 mm			
Fotal Net	Irrigation		140.0 mm		Effe	ctive Rai		182.5 mm			
Fotal Irr	igation Lo	\$365	0.0 mm	·	Tota	a Rain L	165	2.0 mm			
Moist De	ficit at has	rvest	89.4 mm								
Net Supp	ly + Soil	retention	229.4 ms								
Actual W	ater use b	y crop	411.9 mg		Acts	ul Irr.R		229,4 mm			
Potential	Water use	by crop	411.9 mm								
Efficiency	Irr. Sch	dule	100.0 %		Effs	ciency Ra	in .	98.9 %			
D. C.lan	v Irr. Sch	edule	0.0 %								

No yield reductions due to water shortage.

FAO TECHNICAL PAPERS

FAO IRRIGATION AND DRAINAGE PAPERS

1	Irrigation practice and water managament, 1972
1 Rev 1	(A/ C F S) Irregion practice and water management 1984 (E)
2	Irrigation canal lining 1971
	(New edition 1977 available in F. F and S in the
	FAO Land and Water Development Series, No. 1)
3	Design criteria for basin impation systems, 1971 (E*)
4	Villaga irrigation programmes - a new approach in
	water economy, 1971 (E* F)
5	Automated irrigation, 1971 (E* F* S*)
6	Drainage of heavy soils, 1971 (E* F S*)
7	Salinty seminar, Baghdad, 1971 (E* F)
8	Water and the environment, 1971 (E* F* S*)
9	Drainage materials, 1972 (E* F* S*)
10	Integrated farm water management, 1971 (E* F* S*)
11	Planning methodology seminar, Bucharest, 1972
	(E* F*)
12	Farm watar managament seminar, Mania, 1972 (E*)
13	Water use sominar, Damascua, 1972 (E* F*)
14	Trickle irrigation, 1973 (E* F* S*)
15	Dranaga machinery, 1973 (E* F*)
16	Drainage of salty aoils, 1973 (C* E* F* S*)
17	Man's influence on the hydrological cycle, 1973
	(E* F* S*)
18	Groundwater seminar, Granada, 1973 (E* F S)
19	Mathematical models in hydrology, 1973 (E)
20/1	Water laws in Moslem countries - Vol. 1, 1973
	(E* F)
20/2	Water laws in Moslem countries - Vol. 2, 19/8 (E.P.)
21	Groundwater models, 1973 (E)
22	Water for agriculture - index, 1973 (EP/S*)
23	Simulation methods in water development, 1974
	(E F' 5')
29	Crop water requirements, (rev.) 1977 (C E P S)
25	Effective rannal, 1974 (C. E. F. S.)
20/1	Small hydraulic souccures = Vol. 1, 1975 (E F S)
20/2	Anse melacelogical field stations 1078 (E F1 S*)
28	Drainage tasting 1078 (E.E.S)
20	Water quality for screenburg, 1976 (E* E* S*)
29 Ray 1	Water quality for equipulture 1985 (C** E F S)
30	Self-help wells, 1977 (E)
31	Groundwater pollution, 1979 (C* E S)
32	Detarministic models in hydrology, 1979 (E)
33	Yield response to water, 1979 (C* E F S)
34	Corrosion and encruatation in water wells, 1980 (E)
35	Mechanized sprinkler irrigation, 1962 (C E F S)
36	Localized irrigation, 1980 (Ar C E F S)
37	Arid zone hydrology, 1981 (C** E*)
38	Designed to the second state of the second sta
	Drainage design factors, 1980 (AFCEFS)
39	Lysimeters, 1982 (C E F S)
39 40	Lysimeters, 1982 (C E F S) Organization, operation and maintenance of
39 40	Lysimeters, 1982 (C E F S) Organization, operation and maintenance of irrigation schames, 1982 (C** E F S**)
39 40 41	Urainage deagn factors, 1990 (Ar C E F S) Urganitzation, operation and maintenance of irrigation schames, 1982 (C** E S**) Environmental managament for vector control in rice
39 40 41	Drainage delign factors, 1980 (AC CE FS) Lysimeters, 1982 (CE FS) Organization, operation and maintenance of irrigation schames, 1982 (C ⁺⁺ E FS ⁺⁺) Environmental managament for vector control in nce fields, 1984 (E FS)
39 40 41 42	Drainage design factors, 1980 (AC E F S) Lysmeters, 1982 (C E F S) Organization, operation and maintenance of imigation schemes, 1982 (C' E F S'') Environmental managament for vector control in ice fielda, 1984 (E F S) Consultation on imigation in Africa, 1987 (E F)
39 40 41 42 43	Draning design factors, 1990 (AC E F S) Lysimeters, 1982 (C E F S) Organization, operation and maintenance of impation schemes, 1982 (C ² E S) Environmental management for vector control in noe fields, 1984 (E F S) Consultation on impation in Africa, 1987 (E F) Water vitting davices, 1986 (E)
39 40 41 42 43 44	Draning design tactor, 1990 (ACCE F S) Upments, 1992 (CE) FS Upments, 1992 (CE) FS migation schemes, 1982 (CF E FS ⁻) Envronmental mansgarment for vector control in noc fields, 1984 (E F S) Consultation on imgation in Artica, 1987 (E F) Water Hiting devices, 1986 (E) Design and optimization of imgation distribution
39 40 41 42 43 44	Dranago cesejn tacion, 1960 (PC E F S) Uprimeters, 1982 (CF E S) Organization, operation and mantenance of rigidion schware, 1982 (CF E F S) Environmental management for vector conton in not fields, 1984 (E F S) Consultation on irrigation in Africa, 1987 (E F) Water Ming devices, 1980 (E F) Design and optimization of irrigation distribution nativoris, 1986 (E F ²)
39 40 41 42 43 44 45	Drahago design factor, 1960 (PC E F S) Uprimetris, 1952 (C E F S) Uprimetris, 1952 (C E F S) Environmental management for vector control in roe Environmental management for vector control in roe Environmental management for vector control in roe Environmental management for vector control in roe Fords, 1984 (E F S) Consultation on mayation diraction darbution nativorts, 1988 (E F ^{**}) Guidelinas for designing and evaluating aurísoc
39 40 41 42 43 44 45	Usanage steps soons, the U/o C E r sy Database steps soons, the U/o C E r sy Departure in the control and maintainate of impation achieves, 1982 (C' E F S'') Envolumental management for vector control in non fields, 1994 (E' S) Constatution on impatient a Adva. 1987 (E F) Design and optimization of impation distribution materions. 1988 (E' F) Guidelinas for designing and evolution guides and the system in the (E' F) Guidelinas for designing and evolution guides and the system of the field (E' F).
39 40 41 42 43 44 45 46	Usandparten angi techni 50 Usandparten (1990) et 1990 Ognatzanio, coestion and maritenance of migration schemes, 1982 (CF E S°) Enversametal margament för vecko control in not Enversametal margament för vecko control in not Varier riting davors, 1980 (E) Davigs nat operazion of migration därburion Davier riting davors, 1980 (E) Davigs nat operazion of migration därburion Daviehans för davors, 1989 (E) CORVWAT - a concurse program för eringsförn
39 40 41 42 43 44 45 46 46	Unservices, 1982 (C E F S) Operations, organization, constrained and marketineation and marketineation and devices of the service of the se
39 40 41 42 43 44 45 46 47	Labeling energy locities, the for UCEP system Labeling energy locities, the formation of an experimental magnetics, possible and maintenance of implants between the two control in non- flexity, 1942 (C* E F 57) Eleventmental management for vector control in non- flexity, 1942 (E* E 57) Elevent hing structures, 1946 (E) Derags and adjumitation of implant distribution there hings structures, 1949 (E) COPWAVT - a comparison program for implants planning and management, 1952 (E* 5) "Withment the tablement of using an efficient planning and management, 1952 (E* 5) "Withment the tablement of using an efficient planning and management, 1952 (E* 5)

48	The use of saline waters for crop production, 1993
	(E)
49	CLIMWAT for CROPWAT, 1993 (E)

50 Le pompage éolen, 1994 (F)

Availability: March 1994

Ar	-	Arabic	Multi -	Multilingua
С	-	Chinese	•	Out of pnn
Е		English	••	in preparat
F	-	French		
Ρ	-	Portuguese		
s	-	Spanish		

The FAC Technical Papers are available through the authorized FAO Sales Agents or directly from Distribution and Sales Section, FAO, Viale delle Terme di Caracalle, 00100 Rome, Italy

