


Monographs in Theoretical Computer Science 
An EATCS Series 

Editors: W. Brauer G. Rozenberg A. Salomaa 

Advisory Board: G. Ausiello M. Broy S. Even 
J. Hartmanis N. Jones T. Leighton M. Nivat 
C. Papadimitriou D. Scott 



Springer 
Berlin 
Heidelberg 
New York 
Barcelona 
Budapest 
Hong Kong 
London 
Milan 
Paris 
Santa Clara 
Singapore 
Tokyo 



Kurt Jensen 

Coloured Petri Nets 
Basic Concepts, Analysis Methods 
and Practical Use 
Volume 3 

With 154 Figures 

Springer 



Author 

Prof. Kurt Jensen 
Aarhus University 
Computer Science Department 
Ny Munkegade, Bldg. 540 
DK-8000 Aarhus C, Denmark 

Series Editors 

Prof. Dr. Wilfried Brauer 
Institut flir Informatik, Technische Universitat Miinchen 
Arcisstrasse 21, D-80333 Miinchen, Germany 

Prof. Dr. Grzegorz Rozenberg 
Department of Computer Science 
University of Leiden, Niels Bohrweg 1, P.O. Box 9512 
2300 RA Leiden, The Netherlands 

Prof. Dr. Arto Salomaa 
Data City 
Turku Centre for Computer Science 
FIN-20520 Turku, Finland 

Cataloging-in-Publication Data applied for 
Die Deutsche Bibliothek - CIP-Einheitsaufnahme 

Jensen, Kurt: 
Coloured petri nets: basic concepts. analysis methods and practical 
use / Kurt Jensen. - Berlin; Heidelberg; New York; Barcelona; 
Budapest; Hong Kong; London; Milan; Paris; Santa Clara; 
Singapore; Tokyo: Springer 
(Monographs in theoretical computer science) 
Vol. 3 (1997) 

ISBN -13:978-3-642-64556-3 

DO!: IO.1 007/978-3-642-60794-3 

e-ISBN-13: 978-3-642-60794-3 

ISBN 978-3-642-64556-3 Springer-Verlag Berlin Heidelberg New York 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material 
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other way, and storage in data banks. 
Duplication of this publication or parts thereof is permitted only under the provisions of the 
German Copyright Law of September 9, 1965, in its current version, and permission for use must 
always be obtained from Springer-Verlag. Violations are liable for prosecution under the German 
Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1997 

Softcover reprint of the hardcover I st edition 1997 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence 
of a specific statement, that such names are exempt from the relevant protective laws and therefore 
free for general use. 

Typesetting: Camera ready by author 
Cover Design: MetaDesign, Berlin 
SPIN: 10576689 45/3142-5432 1 0 - Printed on acid-free paper 



Preface 

The contents of this volume are application oriented. The volume contains a de­
tailed presentation of 19 applications of CP-nets, covering a broad range of ap­
plication areas. Most of the projects have been carried out in an industrial set­
ting. The volume presents the most important ideas and experiences from the 
projects, in a way which is useful also for readers who do not yet have personal 
experience with the construction and analysis of large CPN models. The volume 
demonstrates the feasibility of using CP-nets and the CPN tools for industrial 
projects. 

The presentation of the projects is based upon material provided by the per­
sons who have accomplished the individual projects. At the beginning of each 
chapter, we list their names and we say where the original material has been 
published. The original material often contains more elaborate information, e.g., 
about details of the modelled system and related work. 

I have edited the material provided by the original authors. I have modified 
some of the CP-nets, e.g., to improve the layout and use more mnemonic names. 
In some cases, I have also changed a few net components, e.g., merged two tran­
sitions or introduced a Standard ML function for operations that are used in 
many arc expressions. These modifications make the CP-nets more appropriate 
as study material, but they do not change the essential behaviour of the CPN 
models. 

The terminology in the original material has been modified to fit the termi­
nology introduced in the first two volumes of this book. Redundancies with the 
material of the other volumes have been removed, e.g., the explanation of what a 
hierarchical CP-net is and how the CPN tools work. The typography has been 
modified to match that used for the other parts of the book. More detailed expla­
nations have been added, e.g., of some of the CPN models and some of the analy­
sis results. This has been possible since, Vols. 1 and 2 have given the readers a 
much more thorough knowledge of CP-nets than readers of ordinary research 
papers. Finally, it is discussed how some of the problems from the projects can 
be overcome or circumvented. Many of these problems have already been re­
moved, e.g., by improvements of the CPN tools. Other problems can be avoided 
by a careful choice of modelling and analysis techniques. 

The material has been modified in cooperation with the original authors and 
the final result has been approved by them. The conclusions and findings of the 
original papers have not been modified. 

The CPN tools for occurrence graphs and performance analysis are rather 
new compared to the CPN editor and simulator. Nevertheless, they have been 
successfully used by several of the industrial projects reported in this volume. 



VI Preface 

For place and transition invariants there is not yet adequate tool support, and 
hence they are much more infrequently used in practical projects. 

How to read Volume 3 

In this volume we assume that the reader is familiar with the basics of CP-nets, 
in particular Sects. 1.1-1.4 and 3.1-3.2 of Vol. 1. 

The individual chapters are to a very large extent independent, and hence they 
can be studied in any order. Readers who only want to study a few projects are 
invited to choose the application areas in which they are most interested. They 
may also choose chapters that cover the use of those analysis methods in which 
they have special interest. A short summary of each project is provided on the 
first page of each chapter. Readers who want to study all (or nearly all) the proj­
ects are recommended to read the chapters in the order in which they occur. 

At Aarhus University, Vol. 3 is being used as part of the material for a 
graduate course. The course is organised as a set of colloquiums where each stu­
dent is responsible for the presentation and discussion of one or more projects. 
In parallel to these presentations the students undertake a project in which they 
use CP-nets for modelling and analysis of a system. The students are expected to 
use one third of their study time on this course, for four months. 

Acknowledgements 

This volume would not have been possible without the efforts of those people 
who have accomplished the projects. All the hard work has been done during the 
projects and the production of the original material. Hence it is the original 
authors, and the other participants in the projects, who should get all the credit 
for the results. I sincerely thank all of them. I also thank the publishers for the 
permission to reuse the material. A number of students and colleagues have read 
and commented on earlier versions of this volume. Moreover, I am grateful to 
Andrew Ross for linguistic assistance during the preparation of the manuscript. 
The CPN project has been supported by the Danish National Science Research 
Council. 

How to contact me 

Despite all help some errors remain. That seems to be inevitable, no matter how 
many people read the manuscript. If you wish to report errors or discuss other 
matters you may contact me via electronic mail: kjensen@daimi.aau.dk. You 
may also take a look at my WWW pages: http://www.daimi.aau.dk/-kjensenJ. 
They contain a lot of material about CP-nets and the CPN tools, including a list 
of errata for this book. 

Aarhus, Denmark 
March 1997 

Kurt Jensen 



Table of Contents 

1 Security System . .......................................... . 

1.1 Introduction to Security System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 
1.2 CPN Model of Security System ................................ 3 
1.3 Simulation of Security System ........ . . . . . . . . . . . . . . . . . . . . . . . .. 10 
1.4 Occurrence Graph Analysis of Security System. . . . . . . . . . . . . . . . . .. 12 
1.5 Implementation of Security System ... . . . . . . . . . . . . . . . . . . . . . . . . .. 16 
1.6 Conclusions for Security System Project. . . . . . . . . . . . . . . . . . . . . . . .. 18 

2 UPC Algorithms in ATM Networks . ......................... 21 

2.1 Introduction to UPC Algorithms ..... . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
2.2 CPN Model of UPC Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 22 
2.3 CPN Model of Traffic Sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 29 
2.4 Simulation of UPC Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34 
2.5 Conclusions for UPC Algorithms Project . . . . . . . . . . . . . . . . . . . . . . .. 36 

3 Audio/Video System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39 

3.1 Introduction to AudiolVideo System .... . . . . . . . . . . . . . . . . . . . . . . .. 40 
3.2 CPN Model of AudiolVideo System. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 42 
3.3 Simulation of AudiolVideo System. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 45 
3.4 Occurrence Graph Analysis of AudiolVideo System. . . . . . . . . . . . . . .. 47 
3.5 Conclusions for AudiolVideo Project. . . . . . . . . . . . . . . . . . . . . . . . . . .. 50 

4 Transaction Processing and Interconnect Fabric. . . . . . . . . . . . .. 51 

4.1 Introduction to Transaction Processing . . . . . . . . . . . . . . . . . . . . . . . . .. 52 
4.2 CPN Model of Transaction Processing. . . . . . . . . . . . . . . . . . . . . . . . . .. 57 
4.3 Introduction to Interconnect Fabric . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 64 
4.4 CPN Model of Interconnect Fabric ............................. 66 
4.5 Conclusions for Transactions and Interconnect Project. . . . . . . . . . . . .. 71 

5 Mutual Exclusion Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 73 

5.1 Introduction to Mutual Exclusion Algorithm. . . . . . . . . . . . . . . . . . . . .. 74 
5.2 CPN Model of Mutual Exclusion Algorithm ...................... 75 
5.3 Occurrence Graph Analysis of Mutual Exclusion Algorithm . . . . . . . .. 78 
5.4 Conclusions for Mutual Exclusion Algorithm Project. . . . . . . . . . . . . .. 84 



VIII Table of Contents 

6 ISDN Supplementary Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 85 

6.1 Introduction to ISDN Supplementary Services .................... 86 
6.2 CPN Model of ISDN Supplementary Services. . . . . . . . . . . . . . . . . . . .. 90 
6.3 Validation of ISDN Supplementary Services. . . . . . . . . . . . . . . . . . . . .. 96 
6.4 Conclusions for ISDN Supplementary Services Project ............. 97 

7 Intelligent Network ........................................ 99 

7.1 Introduction to Intelligent Network ............................. 100 
7.2 CPN Model of Intelligent Network ............................. 103 
7.3 Conclusions for Intelligent Network Project ...................... 114 

8 Communications Gateway ................................... 117 

8.1 Introduction to Communications Gateway ........................ 118 
8.2 CPN Model of Communications Gateway ........................ 119 
8.3 Conclusions for Communications Gateway Project ................. 127 

9 BRI Protocol in ISDN Networks ............................. 131 

9.1 Introduction to BRI Protocol .................................. 132 
9.2 CPN Model of BRI Protocol ................................... 136 
9.3 Conclusions for BRI Protocol Project ........................... 147 

10 VLSI Chip ................................................ 149 

10.1 Introduction to VLSI Chip ................................... 150 
10.2 CPN Model of VLSI Chip .................................... 151 
10.3 Conclusions for VLSI Chip Project ............................ 159 

11 Arbiter Cascade ........................................... 161 

11.1 Introduction to Arbiter Cascade ............................... 162 
11.2 CPN Model of Arbiter Cascade ............................... 163 
11.3 Conclusions for Arbiter Cascade Project ........................ 168 

12 Document Storage System .................................. 171 

12.1 Introduction to Document Storage System ....................... 172 
12.2 CPN Model of Document Storage System ....................... 173 
12.3 Simulation of Document Storage System ........................ 176 
12.4 Conclusions for Document Storage Project ...................... 178 

13 Distributed Program Execution ............................ 179 

13.1 Introduction to Distributed Program Execution .................. 180 
13.2 CPN Model of Distributed Program Execution ................... 181 
13.3 Verification of Distributed Program Execution .................. 185 
13.4 Conclusions for Distributed Program Execution Project ........... 188 



Table of Contents IX 

14 Electronic Funds Transfer System . ......................... 189 

14.1 Introduction to SADT ....................................... 190 
14.2 Introduction to Electronic Funds Transfer System ................ 193 
14.3 CPN Model of Electronic Funds Transfer System ................. 196 
14.4 Conclusions for Electronic Funds Transfer Project ............... 201 

15 Bank Courier Network . ................................... 203 

15.1 Introduction to Bank Courier Network ......................... 204 
15.2 CPN Model of Bank Courier Network .......................... 205 
15.3 Conclusions for Bank Courier Network Project .................. 212 

16 Network Management System .............................. 213 

16.1 Introduction to Network Management System .................... 214 
16.2 CPN Model of Network Management System .................... 217 
16.3 Validation of Network Management System ..................... 221 
16.4 Conclusions for Network Management Project ................... 223 

17 Naval Vessel .............................................. 225 

17.1 Introduction to Naval Vessel. ................................. 226 
17.2 CPN Model of Naval Vessel .................................. 227 
17.3 Simulation of Naval Vessel ................................... 233 
17.4 Conclusions for Naval Vessel Project. .......................... 234 

18 Chemical Production System . .............................. 237 

18.1 Introduction to Chemical Production System ..................... 238 
18.2 CPN Model of Chemical Production System ..................... 240 
18.3 Validation of Chemical Production System ...................... 243 
18.4 Conclusions for Chemical Production Project .................... 245 

19 Nuclear Waste Management Programme . ................... 247 

19.1 Introduction to Nuclear Waste Management Programme ........... 248 
19.2 CPN Model of Nuclear Waste Management Programme ........... 253 
19.3 Simulation of Nuclear Waste Management Programme ............ 258 
19.4 Conclusions for Nuclear Waste Management Project .............. 260 

References .................................................... 261 



Chapter 1 

Security System 

This chapter describes a project accomplished by Jens L. Rasmussen, Mejar 
Singh, and S¢ren Christensen, Aarhus University, Denmark, in cooperation with 
Torben Andersen, Klaus L. Nielsen, and S¢ren V. Hansen, Dalcotech AlS, N¢rre­
sundby, Denmark, and John M¢lgaard, Delta Software Engineering, H¢rsholm, 
Denmark. The chapter is based upon the material presented in [46]. The project 
was conducted in 1995. 

We present an industrial use of CP-nets and the CPN tools to design a new se­
curity system, i.e., a system in which a building is surveilled and different kinds 
of irregularities reported to a control centre via the public phone network. 
During the project a graphical animation utility was developed. This made it pos­
sible to perform user-friendly simulations of the CP-nets. The animation package 
is general, and it is now one of the libraries which are offered to all users of the 
CPN tools. The project lasted for approximately one and a half years, consuming 
more than six man-years - approximately two for CPN activities. 

Simulations and occurrence graphs were used to debug the CP-nets and to in­
vestigate their dynamic behaviour. In this way, a series of errors in the model 
were found and corrected. The final CPN model was used as the specification of 
the security system and hence as the basis for the implementation. The validation 
of the CPN model reduced the number of errors in the final implementation, 
hence increasing the software quality. By using CP-nets the company obtained a 
system which is more reliable, more flexible, and easier to maintain. The project 
was very successful. Dalcotech has reached the overall conclusion that CPN is 
well-suited for the types of systems they are developing and that it will be their 
main design method in the future. 

Section 1.1 contains an introduction to the security system. Section 1.2 de­
scribes the project organisation and the CPN models of the security system. Sec­
tion 1.3 discusses how the CPN models were simulated and presents the graphical 
animation utility. Section 1.4 describes how occurrence graphs were used to 
validate the design. Section 1.5 describes our experiments with automatic gen­
eration of the final code by extracting some of the Standard ML code generated 
and used by the CPN simulator. We also describe how the final implementation 
was done using conventional programming. Finally, Sect. 1.6 presents a number 
of findings and conclusions for the project. 



2 1 Security System 

1.1 Introduction to Security System 

Dalcotech AJS is a small company. Altogether it has less than ten employees. The 
main product is security systems, which are sold in several European countries. 
The project described in this chapter used CP-nets to design and validate a new 
security system, Prisma C-96, which is an intruder alarm system. Figure 1.1 
shows an example of a small installation. The central unit controls the security 
system and it is connected to a control centre via the public telephone network. 
The PIDs (Prisma Interface Devices) handle physical inputs, e.g., different 
kinds of detectors (shown as small circles) together with physical outputs, e.g., 
horn and flashlight. Usually there are several PIDs in an installation, and they 
are connected to the central unit via a network. The security system is operated 
from one or more control panels located inside the building. Each control 
panel has a keypad and an alphanumeric display. Access to the building (and the 
control panels inside) is granted by presenting a valid user code, a physical key, 
or a magnetic card (or combinations of these) at an entry unit, which usually is 
located on the outside wall of the supervised building, next to the entrance. 

The security system divides the building into areas which may overlap each 
other. Each area may be in two different states. When an area is set, the activa­
tion of a detector usually leads to an alarm - reported locally by means of horn 
and flashlight and externally by sending a message to the control centre. When 
an area is unset, the activation of a detector usually does not cause an alarm. 
However, certain kinds of input (e.g., glass-break detectors or sabotage indica­
tions) may cause alarms even for unset areas. The states of the areas are con-

Alarm mesMoe 

Fig. 1.1. Example of a small security system 



1.1 Introduction to Security System 3 

trolled via the control panels and entry units. The most important function of the 
security system is to generate an alarm whenever a detector is activated in a set 
area - or under other illegal circumstances. 

Installations can be quite large. The system handles up to 100 areas, 1000 in­
puts, 1000 outputs and 1000 different user codes. The reliability of the system is 
essential, which is one of the reasons for applying CP-nets in the design. The aim 
is to increase the quality of the software and make the new system more flexible 
than its predecessor. 

1.2 CPN Model of Security System 

In this section we describe the project organisation and the CPN models that 
were constructed. 

The project group had eight members. All the hard work was done in a work 
group with three engineers from Dalcotech and two computer science students 
from Aarhus University. When the project started the engineers had no prior 
exposure to Petri nets while the students had a detailed knowledge of CP-nets and 
their tools. Additionally, three external consultants had regular meetings with the 
work group (one of the consultants is the author of this book). During these 
meetings the CPN models were discussed and proposals for improvements were 
made. Moreover, the overall project plan was discussed and further developed. 

The consultants were responsible for the initial training of the engineers, 
which lasted for six full days and acquainted the engineers with the CPN lan­
guage and the CPN tools. The training was very practical. Most concepts were 
introduced and investigated by means of small examples, where the participants 
used the CPN tools directly at the computer. For the first couple of days a num­
ber of small standard examples were used, but later on most examples were 
based on security systems. After the course, the engineers were able to do some 
amount of work on their own. They continued developing CP-nets in connection 
with a few small projects and in this way they became more acquainted with the 
language and the tools. 

Meanwhile, the design of the new security system was started. At this stage, 
we discussed how CP-nets were to be applied in the project. What was the pur­
pose of the CPN model? Which level of detail should the model have? Which 
parts of the security system should be modelled? The project group agreed that 
the main task was to design the software of the essential part of the security sys­
tem, i.e., the central unit. Communication protocols, hardware failures, and the 
individual low-level behaviour of each control panel and entry unit were not to 
be modelled. Moreover, the CPN model should be sufficiently detailed. For in­
stance, it should describe that some of the actions in the system are based on 
time-events. As an example, a user has to insert his key in the block key unit 
within 60 seconds after entering his user code at the code entry unit. At this 
stage, the work group did not know how to model this. It was just recognised 
that time-events play an important role in the system. 



4 1 Security System 

During the start-up period the engineers realised that CP-nets were well 
suited for making detailed system designs. This was reflected by the use of 
CP-nets in connection with two other projects at Dalcotech. With respect to the 
security system model, the start-up phase did not yield many tangible results, but 
provided an increased understanding of how CP-nets were to be used. The start­
up phase lasted 2-3 months, partly because it takes a while to become familiar 
with the use of CP-nets, and partly because in this phase the work group also re­
flected upon the system's functionality. A requirements specification was initi­
ated by the engineers. This was a textual description of the future system and was 
to serve as a guideline for developing the CPN model. 

One of the consultants suggested that it might be possible to obtain the code to 
be used in the final implementation by automatically extracting some of the Stan­
dard ML code generated and used by the CPN simulator. In this wayan error­
prone and time-consuming manual implementation could be avoided. The feasi­
bility of this idea was examined in considerable detail throughout the entire proj­
ect, and we shall return to it in Sect. 1.5. However, at this stage it was uncertain 
whether it would be possible to perform automatic code generation, or whether 
the CP-net had to serve as a detailed design supporting a traditional implementa­
tion. 

With a possible C++ implementation in mind, the work group started model­
ling the system using a client/server approach. It was believed that this would 
ease the final implementation and be flexible, allowing easy expansion of the 
system with few changes to old parts. In this CP-net, a single place models the 
communication between the different client and server processes - each token 
representing a message queue. Data belonging to a process can only be modified 
in the subnet of that process, avoiding situations in which two processes try si­
multaneously to update the same data. In this way, a high degree of data control 
and modularity was obtained. On the other hand, all processes need to communi­
cate through the place with the message queues to obtain access to data in other 
processes. This gives a CP-net in which the net structure provides little overview 
of the communication patterns, because all messages pass through a single place. 

During the start-up phase, one of the consultants constructed an alternative 
CPN model. The aim of this model was to capture the essence of the security 
system, as described in the requirements specification without considering the 
way of implementation. Hence we refer to this model as the implementation in­
dependent model. In this model the net structure provided a much better over­
view of the communication, since the messages were no longer channelled 
through a single place. 

One approach had to be chosen and used for the rest of the project. The 
choice fell on the implementation independent approach. The loss of clarity and 
the focus on implementation issues were unacceptable drawbacks of the cli­
ent/server approach. The project group decided that it was a question of model­
ling the security system concepts themselves instead of modelling an implemen­
tation of a security system. Hence it was agreed that a more comprehensible and 
general model would be desirable. Moreover, the engineers were becoming 
more acquainted with CP-nets and they began to get an idea of how an imple-



1.2 ePN Model of Security System 5 

mentation independent model could be implemented. As a result of this decision, 
a new model was constructed. Small parts of the previous models could be re­
used, but the new model was developed almost from scratch, with major revi­
sions of all data structures and functions previously declared. 

Having already made two (incomplete) models of the system, it was much 
easier to start on the new model. The work group was very careful with the de­
sign of the fundamental structure of the CP-net. Quite some time was spent on 
identifying candidates for the system's key processes. Most of the colour sets 
were based on information in the textual requirements specification - which was 
extended and made more detailed in parallel with the development of the CPN 
model. As an example, the requirements specification tells us that each user has a 
certain number of attributes, including user name, user code, and access rights. 
This was readily translated into a colour set declaration, where all the user data 
is represented by a list of records with a field for each user attribute mentioned 
in the requirements specification. 

The work group used a top-down approach and started by determining the 
basic structure of the CPN model. In Fig. 1.2, the most abstract view of the 
CP-net is shown. The main system components are represented by the three sub­
stitution transitions. The Environment models the peripheral devices, i.e., the 
detectors, control panels, entry units, horns, flashlights, etc. The Central unit 
constitutes the largest and most important part of the model. It represents the 
software that manages the global data and realises the functionality of the secu­
rity system. The Configuration consists of a single page. It is used to initialise the 
global data, by reading the necessary information from input files. 

The socket places in the left part of Fig. 1.2 represent the communication 
between the Central unit and the peripheral devices in the Environment. They 

EnvIron­
ment 

", .. " """""""", ", 
~ CLOCK ~ , , , , 

~-+'-- ' 

("iiii~p;;NTU'U"U'~ , , 
"." OV',""". ~ 
, - , .. ~ ~ 
~ "", .. """""""",./. 
" .. """""" """", .. ", 
~ COHTltOL PANILS ~ 

~ a' Q./O ~ 

--t- ~ 
~ c-.III(. -f-
, , , , .. ", "", """""""", 

Central 
unit 

;." ", .. " ...... " ", .... " .. , .. " .... 
'~: CONP10IJRATJON OATA 1 
.. ~",j"'''~"" ~ 

14-~--~ u.... JI4--+--I 
·1 ... , ..... " ... - '0 
~ •• t ••••••••••• " 

14-~--~, k_ ~-+-4 
II.," ........ ,.,\!!) 

fJifIllT~1~1·.,1 

14-+--~,.,.U~,I ... JIc ... I---+-i 

Fig. 1.2. Most abstract ePN view of security system 



6 1 Security System 

constitute the 110 interface to the environment. As an example, we can see that 
digital input/output are modelled by two places: Changed logical input holds a list 
of those detectors for which the PIDs have recorded a change. Analogously, 
Changed output holds a list of outputs from the Central unit to the PIDs. This 
may, e.g., cause the horn or the flashlight to be activated. 

The fusion places in the right part of Fig. 1.2 represent global data initialised 
by the Configuration. Their colour sets are lists of records, where each record 
has 10-20 entries describing both static and dynamic data. Instead of using fusion 
places, we could have represented the global data by means of socket places. 
However, this would have introduced a lot of extra arcs at the subpages of the 
Central unit - because each page must contain the places for those global data 
which are used by any of its subpages, even when the page itself does not use the 
corresponding data. These extra arcs would have blurred the net structure with­
out providing any extra information. Hence, we represent the global data by 
means of fusion places instead of using the port/socket mechanism. The arcs sur­
rounding the fusion places in Fig. 1.2 are auxiliary arcs. This means that they 
have no formal meaning. They are added to show that the data is initiated by the 
Configuration and read/modified by the Central unit. 

Splitting the model into subnets for the Environment, Central unit, and Con­
figuration turned out to be a good design decision, as it isolates the software of 
the central unit from the peripheral hardware units and the configuration. Later 
on, it also made it easy to use three different versions of the Environment and 
Configuration. One version was used during simulations, another during occur­
rence graph analysis, and a third during automatic code generation. 

Figure 1.3 shows the subnet of the Central unit. The work group identified 
five key processes: Input event handler receives changed inputs from PIDs and 
determines whether alarms are to be generated. Time handler controls time­
dependent data and handles time-out events. Control panel handler takes care of 
the user interaction via the control panels by sending menus to the control panels 
and executing the actions requested by the user. Log handler updates the logs and 
produces printer output, e.g., when an alarm occurs. Entry unit handler takes 
care of the entry units. Each of the five processes are activated when there are 
tokens on the input places. The tokens represent environment changes, e.g., an 
activated detector or a command entered by the user. 

The Central unit starts by executing the two upper transitions. They Initialize 
outputs and Initializecontrolpanels. Then the five key processes can be executed. 
However, the single token at place CPU idle ensures that only one of the key 
processes can occur at a time. One of the processes is chosen and finished before 
another can proceed. This kind of co-processing is done to prevent the processes 
from operating on shared data, simultaneously. It also reflects the fact that only 
one processor exists in the hardware to be used for the implementation of the se­
curity system. 

Figure 1.4 shows the subnet of the Input event handler. The sequential process 
flow runs from top to bottom and is indicated by thick arcs. The fusion places 
are a subset of those shown in Fig. 1.2. They represent the global data used by 
the Input event handler. The data flow is shown by using black and white arrow 



1.2 ePN Model of Security System 7 

heads (where the former indicate the main direction of the data flow). As an ex­
ample, it can be seen that transition Find alarm type (in the central part of Fig. 
1.4) updates the global data for Areas (and removes the old data). Some of the 
arc expressions use the %-operator, which is a shorthand for an if-then-else con­
struction. When the left-hand expression evaluates to true, the value is the value 
of the right-hand expression. Otherwise the value is the empty multi-set. The 
guards and arc expressions contain a considerable number of quite complex 
Standard ML functions. We will not explain these functions in any detail - their 
names and arguments provide some hints about what they are doing. 

Now let us investigate Fig. 1.4 in more detail. On the upper, leftmost place 
Changed logical inputs are received from the Environment. This may, e.g., rep­
resent an opened input circuit due to an activated infrared detector. An input can 
be either closed, opened, or sabotaged. The first transition Receive changed in­
puts updates the state of the changed inputs (i.e., the marking of the Logical in­
puts fusion place). Then Get input data retrieves the state of the Area in which the 
input is situated. Find alarm type determines the alarm type to be generated. For 
example, a glass-break detector will generate an intrusion alarm. Additionally, 
Find alarm type delays input changes from areas which are temporarily unset via 
entry units. If an unset command is not received from a control panel within 45 
seconds, the delayed inputs will activate alarms (via the Time handler). The next 
transition Filters events already registered. This will, e.g., avoid repeated re­
porting of a broken window. In order to reduce the number of false alarms in­
puts may be combined in sets, where all members must be opened before an 
alarm is triggered. This is handled by Combined input check. Then, an alarm 

CPU 
idle 

Fig. 1.3. ePN page for Central unit 



8 1 Security System 

condition may be registered by the subnet of Register alarm (which is a substitu­
tion transition). 

A detailed inspection of the arc inscriptions shows that the Input event handler 
executes the six transitions in the central column, starting from the top and con­
tinuing downwards. Under certain conditions a transition may decide that there 
is nothing more to be done. Then it puts a token on Generate outputs (instead of 
producing a token to trigger the next transition). This is, e.g., the case when 
Find alarm type determines an alarm type which is a "no alarm". When this hap­
pens the subnet of Update outputs (which is a substitution transition) reevaluates 
the output expressions to determine whether there are any Changed outputs due 
to the newly detected input changes. Each output has an expression that deter­
mines whether the output shall be on or off. As an example, the output expres­
sion for the horn could be AlarmCond(l) or AlarmCond(2) indicating that the 
horn is activated iff there is an alarm condition either in area one or two. 

Figure 1.5 shows how the Time handler manages the time-dependent data. 
The six fusion places (in the upper left part) contain tokens with a colour in 
which an integer represents the number of seconds before some time period ex-

CHG_INPs 
~ 

Changed (Iid,listate)::chginps 
logical inpu~t ~=~~~=::::::~ chginps 

loginps 

INPupdState((lid,listate),loginps) 

[Jistate = close<Wloe 

[alarmtype = noalarmj%e 

~-=-___ -=--=--.( Generate 
L----~r:-------' outputs 

loginps [notb]%e 

(b = INPchkComINP(#oinps loginp,loginps)] 

Fig. 1.4. ePN page for Input event handler 



1.2 ePN Model of Security System 9 

pires. As an example, each Area has an integer field denoting the remaining sec­
onds the area stays temporarily unset. The Pass one second transition decreases all 
these time values by one. The transition can only occur when Seconds to spend 
has a token. The token represents clock-ticks generated by a clock in the Envi­
ronment. When one of the time values reaches zero, appropriate action is taken 
by one of the five transitions in the lower left part. 

Note that the CPN model of the security system is un timed - although it de­
scribes time-dependent issues, such as time-outs. Timed CP-nets were not consid­
ered, since we did not intend to make performance evaluations. Instead, the 
CP-net should be able to explicitly cope with "real" clock-ticks received from the 
Environment. 

Above, we have described the most abstract level of two of the key processes 
in the Central unit. The complexity of the remaining three processes is similar. 
Altogether, the model consists of 38 pages with 95 transitions and 325 places. 
Some parts of the handlers for the control panels and entry units are identical 
and hence they use the same subpages. The CPN model contains approximately 
4000 lines of CPN ML code - primarily for declarations of functions and col­
our sets. Most of the subpages and all the colour set declarations can be found in 
an appendix of [45]. 

The modelling and the simulation (to be described in the next section) were 
done by the entire work group. The engineers did approximately half of the 
work while the students did the rest. Most of the work was performed at two dif­
ferent locations, separated by more than 100 kilometres. For this purpose hier­
archical CP-nets turned out to be very useful. The engineers could work on one 
set of pages while the students were working on another. Then the modifications 
were merged by loading pages from one model into the other. After a few 

AREAs ENTRY_UNITs CONTROL PANELs OUTs LOG,INPs SETTING INT ~ E l~ 
""""'"'" """.tI'II,., ","''''',,,,, """"""" "",''',,,,,, ",'10"""", if' Areas "'1 ( Entry II) (Control II) (Outputs "~ll l Logical II~) {settmg ") Seconds to 

t.~;~;cTlm. ~~~cTlm. ~:~~cTIm. 1~~~)ncTim. :~~:~~:;m. ~;;:~~~'me (i>1J%(;.j) T ", ........... ~ I ..... ~?'!~ ... ~ "'''~Ia~l~~~''~ 1· .... 'll .... ·~ " ... :~~Pl~~~ .. ·~ ·' .... II .... ··~ 
.-",-__ '_U--,S LL-__ "PS _ outs 1 ~og'nps _ ~ett'ng l~ 
[eus2::(EUtimeEvents(eus)}, 
cps2=(CPtimeEvents(cps», 

outs2::(OUTtimeEvents(ou\s)), Pass one second 
areas2=(AREAtimeEvents(areas», 
loginps2::(lNPtimeEvents(loginps)), 
noactions=FindNumber([eus2=[],cps2=O,outs2=[j,areas2=[],loginps2=:Dlll 

I 
CP RESP ...1-
-('"FIespo~ 
~_IOCP .-/ 

~ 

Fig. 1.5. ePN page for Time handler 

(noactions=5j%e 



10 I Security System 

months the engineers were able to work on their own. This meant that they con­
structed and simulated their own CPN pages. 

As the design of the system evolved throughout the modelling process, the 
work group frequently had to reject or radically change parts of the model. The 
most serious changes (apart from rejecting the client/server approach) were 
made after employees from Dalcotech learned more about the requirements that 
a security system needs to fulfil in order to be approved by the German standard 
for security systems. Furthermore, monthly meetings with the consultants in­
duced a number of changes to the model. In this way, the modelling process was 
conducted in a prototyping fashion. 

In parallel with constructing the CP-net, a written requirements specification 
was worked out. For those of us without knowledge of security systems, this was 
an important aid in the modelling process, as we could see a detailed description 
of what we were supposed to model. On the other hand, the design of the de­
tailed CP-net made it possible to elaborate the requirements specification. The 
correlation between the requirements specification and the CPN model was use­
ful and also resulted in two system descriptions instead of one. This was useful 
later on, as both were used to retrieve information about the system. 

1.3 Simulation of Security System 

Simulation is an important instrument for debugging and validating CP-nets. It 
gives the developers an improved understanding of the system behaviour. 

In order to enhance the user interface during simulations, we constructed a 
graphical animation utility, as a library written in Standard ML. This library 

MIMIC-BOAR 

L1ghHndallOf 

0-. .. 
e ­o ... x_ 

Fig. 1.6. Animation page for user-friendly simulations 

OALCOTECH 



1.3 Simulation of Security System 11 

supports two-way communication between a user and the CPN simulator. As the 
simulation of a CPN model progresses the simulator animates the results, by 
showing/hiding graphical objects and by moving them around - in a similar way 
as actors can appear and move on a theatre scene. During the animation the user 
can interact with the CPN model by using the mouse to click at some of the 
graphical objects. In this way a user-friendly simulation is obtained. 

During the simulations of the security system, the user observes a window 
similar to the one shown in Fig. 1.6. It shows the building being surveilled by 
the security system. The user can inspect the state of each detector, which is rep­
resented by a small circle, and can change this state by clicking on the detector 
and then on one of the three possible states (in the upper part of the window). 
The user can also inspect the state of each area by looking at the small square 
boxes positioned in each room. They represent light indicators (on means that it 
is safe to enter the room, while qffmeans that the room is under surveillance). 

At the bottom of the window the user can see that the horn and flashlight for 
the moment are active. When they are deactivated the two icons are hidden and 
two other, slightly different, icons are shown (on the same positions). The stop 
icon (in the lower left corner) allows the user to stop the simulation. The clock 
icon allows him to advance the time some specified number of seconds (without 
observing all the intermediate changes). Finally, the two log icons allow him to 
inspect the contents of the system logs (which are shown in separate windows). 

The user can also click one of the small icons representing control panels 
(positioned in the two rooms with an outer door). This opens the window shown 
in Fig. 1.7. The display (in the middle upper part) contains the appropriate text; 
the light indicators (to the very left) are as on a real control panel. Moreover, 
the keys are active and can be pressed by the mouse, e.g., to enter a user code, 
which then is caught by the Environment subnet and passed to the subnet for the 
Central unit. The entire control panel dialogue, where the user browses in menus 
(received from the central unit) and selects commands (to be sent to the central 
unit) has been implemented using our animation utility. The entry units are han­
dled in a similar way, but their window is of course different, since it reflects 
the look and dialogue of the entry units. The animation utility and the simulator 
are synchronised. When an input has been requested, the simulator waits until an 
object has been clicked by the user. 

Fig. 1.7. Animation page with control panel 



12 1 Security System 

The library for the animation utility was constructed as part of the security 
system project and as part of the students' Master's thesis work. It is now a stan­
dard library offered to all users of the CPN tools. The library consists of a num­
ber of Standard ML functions, which are called from code segments of the indi­
vidual transitions. The graphic objects are built by the user within the CPN edi­
tor (or they are bit-maps entered via a scanner). This allows modellers to cus­
tomise the graphic layout for their own specific needs. For more information see 
the user's manual [47]. 

Due to the animation utility, the modellers did not have to inspect the tokens 
of the CP-net. Instead they could follow the progress of the simulation in a much 
more direct and natural way. This made it easy to check whether the security 
system had the intended behaviour. Only when errors occurred did the modellers 
have to dig down in the CPN model to locate and fix the error. The animation 
utility was also useful when the design was presented to people without any 
knowledge of CP-nets, or to the external consultants (who all had a detailed 
knowledge of CP-nets). 

The work group used an iterative approach, alternating between modelling 
and simulation. The first prototype was gradually refined, and eventually it con­
stituted the final model. Whenever the model was changed, simulation was used 
to investigate and validate the changes. By using the animation utility it was usu­
ally easy to check whether the present design met the modellers' expectations. 
Typical simulation runs contained 300-400 steps. 

The quite extensive simulations revealed a considerable number of errors, 
which were located and corrected long before the implementation started. The 
simulations also gave the members of the work group a deep understanding of 
the design - identifying good and weak spots. Note that this insight was obtained 
during the design phase and not afterwards. This fact is believed to have had a 
strong positive impact on the quality of the final design. 

1.4 Occurrence Graph Analysis of Security System 

As mentioned above, the CPN model is used as the specification of the final pro­
gram. Therefore, finding an error in the model, by means of simulation or 
analysis, may remove an error from the final program. Simulations of the 
CP-net revealed many flaws and provided feedback for improving the model 
during the entire design phase. At the end of the design phase, the two students 
applied occurrence graph analysis in order to locate as many errors as possible 
before the implementation. Due to lack of resources and a very tight time sched­
ule, the O-graph analysis was made by the students alone. However, we do be­
lieve that the analysis could have been performed by the engineers - after some 
modest amount of training. 

To obtain occurrence graphs with a manageable size, it was necessary to sim­
plify the ePN model. Some of the colour sets were records with 10-20 fields 
which either change dynamically during simulation or are determined by the 
configuration of the system. Even when large colour sets (such as integers) are 



1.4 Occurrence Graph Analysis of Security System 13 

replaced by smaller ones, the number of different reachable markings is enor­
mous. Hence, we did not expect to be able to prove the correctness of the CP-net 
for all possible configurations and all possible inputs. Instead, we wanted to use 
small configurations and limited sets of inputs - to look for errors in the model 
and to get an increased understanding of the system. In this way, the occurrence 
graph analysis became more like an "extended simulation" investigating all pos­
sible occurrence sequences of small configurations for limited sets of inputs. 
This supplements our "normal simulations" which investigate one occurrence se­
quence of a large configuration allowing all inputs. 

In order to be able to generate full O-graphs, we applied a minimal configu­
ration with only one area, one input, one control panel, etc. Furthermore, some 
of the data fields were modified. For instance, time-out periods were all set to 
expire after one second. It should be obvious that these modifications constitute a 
quite strong simplification of the security system, limiting the generality of our 
analysis results. For example, we were not able to examine conflicts between two 
control panels attempting to operate on the same area. As described later in this 
section, we also made occurrence graphs for larger configurations, but for these 
we were only able to obtain partial O-graphs. 

We also made a new version of the Environment sub net. For the simulations 
we used an environment that contained, among other things, the interface to the 
animation utility. This utility is totally unnecessary and useless for the O-graph 
analysis. Hence, the simulation Environment was replaced by a much simpler 
O-graph Environment consisting of the single page shown in Fig. 1.8. 

Each of the five transitions generates a different kind of input. The upper 
transition generates clock-ticks, and from the arc expression of the rightmost 
arc, we can see that the only possible value is one. The Time sync fusion place 
synchronises the transition with the Central unit. It makes it impossible to gener­
ate a new clock-tick until the previous one has been processed. The second tran­
sition generates Changed logical inputs. The two places to the left of the transition 
determine the range of the possible inputs. With the initial marking shown it is 
only possible to change input number one to either closed or opened. The third 
transition generates different kinds of commands from entry units. The EU sync 
fusion place synchronises the transition with the Central unit, while two of the 
other input places determine the range of the possible commands. With the initial 
marking shown it is only possible to generate a code enter or an euunset com­
mand from entry unit number one. The last two transitions generate commands 
from control panels. The upper transition generates user codes while the lower 
one generates menu selections. The guard guarantees that only interesting selec­
tions are made, i.e., those that are necessary in order to test the important func­
tions of the control panel. 

In addition to changing the Configuration and Environment, we had to make 
several other modifications to the CPN model. For example, we excluded the log 
facility, and we limited the number of Changed outputs so that there was never 
more than one. We also made the CPU idle place accessible at the Environment 
page - forcing the environment transitions to occur only when the CPU was idle. 



14 1 Security System 

In spite of all these modifications, we could not achieve a full O-graph for the 
minimal configuration and the environment displayed in Fig. 1.8. Instead, we 
made O-graphs for selected parts of the system. For example, we disabled the 
entry unit commands by removing some tokens from the initial marking of Fig. 
1.8. In this way, we generated a considerable number of different O-graphs. The 
largest had 150000 nodes and 250000 arcs. For practical reasons, we usually 
worked with smaller O-graphs which had up to 50000 nodes. 

Above we have described how it was necessary to simplify the ePN model in 
order to be able to obtain full O-graphs. It is obvious that the simplifications 
make it impossible to claim that we have proved the correctness of the security 
system. Nevertheless, the O-graph analysis turned out to be successful. It greatly 
improved the work groups' confidence in the system - and our knowledge of its 
dynamic behaviour. As we shall see below, the occurrence graph analysis also 
located a significant number of errors in the ePN model. 

The O-graphs were constructed by means of the OG tool, which now is an 
integral part of the ePN tools. When an O-graph has been calculated, a set of 
standard queries makes it possible to investigate reachability, boundedness, 
home, liveness, and fairness properties - corresponding to the proof rules of 
Sect. 1.4 of Vol. 2. For example, a single function call returns a list of all tran-

INT 

One second 

1'1 INT 1'closed+l'opened 

chginpsM[(iid,listate)) CHG_IN'" Changed 

I _-----.-::::====::::::~~~~::~J1:==;~~===~~logicalinput V chginps ~ 

(cpJd,str) 

(cp_id,codemenu,display) 

Control panel 
(cpJd,nth (#line2(display), t» 

'-__________ ~~_s~e~le::c~tio:":n~~ (cp_id,browsemenu,display) 

[ i < length (#line2(display» andalso 
(Member (nth (#line2(display),i),["UNSET","SEr,"END","SHOW ALARMS", 

"ACKNOWLEDGE", "CCNTINUE"I))) 

Fig" 1.8. CPN page for Environment used during occurrence graph analysis 



1.4 Occurrence Graph Analysis of Security System 15 

sition instances which are live, while another function returns the maximal num­
ber of tokens which a specified place instance may have. In general, the standard 
queries increased our confidence in the model. For instance, we established 
bounds on places and determined which transitions were live. 

With environments like the one in Fig. 1.8, we found that only one terminal 
strongly connected component existed. Thus, the individual nodes of the terminal 
component are all home markings. This agrees with our expectations. When 
alarms are generated, they can be acknowledged and thereby removed; when an 
area is unset, it can be set again; and so forth. 

Some properties could not be verified by means of standard queries. For this 
purpose, the OG tool provides search functions for traversing nodes, arcs, or 
strongly connected components of the O-graph, using user-defined functions to 
retrieve the desired information. As an example, we made a query which 
searched all nodes of the O-graph and checked that each of them had only a sin­
gle token representing one of the five key processes. 

The most important property of the security system is to report an alarm to 
the control centre whenever a detector is triggered under illegal conditions. We 
applied the search functions of the OG tool to make queries that found all nodes 
where a token had arrived at the place Open/sabotaged logical input in the upper 
part of Fig. 1.4. Such a token represents a situation for which an alarm should be 
generated. For all these nodes, we found the first successor nodes in which the 
input change had been treated by the Input event handler, and for these nodes we 
verified that the system was in an alarm condition and that the horn had been 
turned on. 

As described above, we investigated standard as well as system-specific dy­
namic properties of the security system model. Moreover, the analysis revealed 
14 non-trivial errors, which had not been found by the quite extensive simula­
tions performed. Approximately half of these errors are of kinds which make 
them highly unlikely to be found by simulations or testing. They only occur un­
der very special circumstances, e.g., involving a time-out for one particular ac­
tion while another particular action is being executed. 

Many of the errors were found by means of exceptions raised by Standard 
ML functions, e.g., when by mistake the function received an empty list as ar­
gument. When an exception is encountered during the construction of an 
O-graph, the generation halts. It is possible to move the marking of each indi­
vidual OG node to the simulator. In this way, the marking that causes problems 
can be examined. Furthermore, the OG tool makes it easy to find occurrence se­
quences leading to the marking and in this way the error can be located. 

For example, we discovered that the O-graph generation halted when the 
control panel timed out (which normally happens after 30 seconds of idle time). 
The exception appeared when a user had been acknowledging alarms, a time-out 
had occurred, and the user had chosen to acknowledge alarms again. This turned 
out to be caused by an index error in the control panel data structure. It is highly 
unlikely that the sequence of actions leading to this error would have been en­
countered in ordinary simulations/program tests. Hence, the error is likely to 



16 1 Security System 

have existed in the final program - had it not been found by means of the occur­
rence graph analysis. 

The OG tool makes it possible to display selected parts of the marking of 
nodes and the binding element of arcs. By examining these markings and binding 
elements, we also found a number of errors. For instance, we discovered that the 
list of area records situated on the Areas place (in Fig. 1.2) sometimes were ex­
panded (so that some records were duplicated). The problem had not been en­
countered during the simulations. 

As mentioned above, we also constructed a number of partial O-graphs for 
larger configurations (e.g., with two control panels) and a wider range of inputs 
generated by the OG Environment. For these O-graphs we limited the number of 
times the Central unit was allowed to become active (often allowing only a single 
activation). Thereby, the O-graphs became acyclic, and most of the standard dy­
namic properties of the O-graphs became uninteresting. For instance, no transi­
tions were live. We also found errors in the model by this approach. As an ex­
ample, we discovered that inconsistencies could occur when simultaneously two 
users were acknowledging alarms at different control panels. The problem was 
that a user could attempt to acknowledge an alarm which had already been ac­
knowledged by another user. Also this kind of error is difficult to find by means 
of simulations/tests. 

All in all, O-graph analysis turned out to be an efficient and fruitful way of 
debugging the security system. We have demonstrated that O-graphs can be used 
even when the system is complex and only part of the ePN model can be exam­
ined. One lesson to be learned is that it is important to be as economical as possi­
ble by removing unnecessary parts of the occurrence graph. To illustrate this, let 
us once more consider the O-graph environment in Fig. 1.8. Late in the occur­
rence graph analysis, we recognised that this environment is too general, since it 
allows several inputs to be generated and queued for processing - while it would 
have been sufficient to generate one input at a time. A quick experiment showed 
that this simple modification, for a typical O-graph, reduced the number of 
nodes from more than 10000 to less than 2000, i.e., by a factor 5. 

A much more detailed description of the occurrence graph analysis and the 
located errors can be found in part 3 of [45]. 

1.5 Implementation of Security System 

As mentioned in Sect. 1.2, one of the consultants suggested that it might be pos­
sible to obtain the code for the final implementation by extracting some of the 
Standard ML code used by the ePN simulator. In this wayan error-prone and 
time-consuming manual implementation phase would be avoided. The feasibility 
of this idea was examined in considerable detail throughout the entire project and 
it actually turned out that such an approach was possible. 

The basic idea was to reuse some of the ML functions which the simulator 
generates for its own use. One of these functions tests whether a transition has 
any enabled binding elements, while another function calculates the effect of an 



1.5 Implementation of Security System 17 

occurring binding element, i.e., how the marking is updated. The ML functions 
were automatically extracted from the simulator code, positioned in a simple 
run-time environment (without any kind of graphics, etc.) and transferred from 
the Macintosh used for the CPN modelling to an IBM Pc. Here the code was 
compiled under Moscow ML and CAML light, which provide an ML imple­
mentation that runs significantly more slowly but requires much less run-time 
memory than those ML systems usually applied by the CPN tools. Finally, the 
object code was burned into two PROMs and mounted in a prototype of the 
hardware to be used for the central unit. The stand-alone executable of the SML 
code used approximately 450 KB of memory, and the data also took up 450 KB 
on the 80386 PC-card used in the central units of the security system. 

The experiments were encouraging. They showed that the idea was feasible 
and the PROMs seemed to work as expected. However, we also recognised that 
the automatic implementation was too slow, at least for large configurations. 
Hence, it would be necessary to improve the speed. This is not at all impossible, 
since improvements can be obtained in several different ways. First of all, we 
used the simulator code without any modifications. Instead we could have gener­
ated code which was more optimal, e.g., by removing those parts that deal with 
breakpoints and other unnecessary issues. Secondly, the speed depends on the or­
der in which the individual transitions are tested and executed. We did some 
work to optimise this, but more could have been gained. Finally, we could have 
used a faster processor, and it is indeed possible to purchase a processor which is 
ten times as fast as the one Dalcotech is using, without paying a significantly 
higher price. However, here we were stopped by a number of bureaucratic 
problems related to the certification of the security system. 

At the end it was decided that it would be too risky to make the first imple­
mentation of the security system via automatic code generation. A tight schedule, 
lack of resources, and uncertainty about the success of this new approach were 
the main reasons for the decision. By using CP-nets, the project had already in­
volved a large amount of new technology. Thus there were no resources for ad­
ditional experiments. For marketing reasons, there was a strong pressure to fin­
ish the implementation as soon as possible. Hence, it was decided to make the 
first implementation in a conventional way. However, there are still ongoing ex­
periments with automatic code generation, and it is believed that later versions of 
the system may be realised in this way. 

To implement the central unit, the ML functions and colour sets of the CPN 
model were translated into C++ functions and types. This was a reasonably 
straightforward and trivial task. To make the translation as easy and consistent as 
possible, the engineers developed a company standard describing how this should 
be done. The standard prescribes that the structure of the CP-net be used as a 
template for the C++ program. This means that there is a piece of code for each 
CPN page, and that this code is divided into units that implement the individual 
transitions. Page and transition names are shown in comments or (when appro­
priate) in the name of the function that implements a transition. Hence it is easy 
to relate the individual parts of the C++ program to the parts of the CPN model. 
In the CPN model there is a separate file for each global fusion place containing 



18 1 Security System 

the ML functions used to access the data represented by the place. Each of these 
files is translated into a file with a C++ class containing a similar set of functions. 
The new file gets a name which is identical to the old one (with some specified 
extension). 

Although the implementation is done in C++, it turns out that the engineers 
still think and talk about the security system in terms of CP-nets. As an example, 
they have made a small debugger that shows the marking of some of the most 
important CPN places - now realised via C++ data structures. 

During the implementation it has become necessary to make small modifica­
tions to the design. In this case the engineers update the CP-net before they im­
plement the changes. Hence, the CPN model is kept up-to-date with the actual 
implementation. The model serves as the specification of the security system and 
it will be used when new employees are introduced to the system. 

The implementation of the security system took approximately eight months. 
However, this also includes the time used to design and implement the "low­
level" parts of the systems, e.g., the communication between the PIDs and the 
central unit. To specify this part, the engineers also used CP-nets, and for this 
purpose they constructed a new, quite complex CPN model. 

1.6 Conclusions for Security System Project 

Figure 1.9 provides an overview of the project activities up to the start of the fi­
nal implementation. The inscription in the lower left corner of each box presents 
the main agents of the activity (engineers, students, and/or consultants). Analo­
gously, the inscription in the lower right corner - and the size of the box - indi-

Dec Jan I Feb I March April I May I June July I Aug .1 Sept Oct 
, , 

Occurrence graph 
analysis 

Stud 3.0 

Client/server model Final, implementation independent model 
Eng + Stud 2.5 Eng + Stud 8.0 

Stud Animation unitility 4.0 I 
, 
Con Initial, implementation independent model 2.51 

Initial training 

All 2.5 

Eng Requirements specification 2.51 
, I 

Dec Jan Feb I March I April I May I June July I Aug I Sept Oct 

Fig. 1.9. Overview of the activities in the security system project 



1.6 Conclusions for Security System Project 19 

cates the number of man-months used for the activity. Together the activities 
shown involve a total of 25 man-months. 

The project was supported by a grant from ESSI, which is an EU-funded 
programme to support the introduction of new software development methods in 
small companies. The project was very successful. The rest of this section quotes 
from [1], which constitutes Dalcotech's final report to ESSI. It is written by one 
of the engineers. 

The CPN method was successfully used for software design in the base-line 
project. It proved to work excellent for gradually developing a design from a 
written requirements specification to a software design ready to implement: 

• Powerful in describing control and data flow. 
• Supports both abstract designs and detailed/specific designs. 
• The designer determines the mix of graphics and text. 
• Hierarchical model. 
• Deficiencies easy to spot - early. 
• Design errors spotted through simulations (test). 
• Easy for several persons to discuss a CPN design of a system (CPN is a good 

common language!) . 
• We spent 6-7 days of intensive training followed by 2-3 weeks of work be-

fore we were ready to apply the method productively. 
• Not well suited for user interface design. 

It is an advantage to start using the CPN model already in the requirement speci­
fication phase. The method provides a very good help in structuring thoughts 
and ideas at this time. The CPN method facilitates reuse, as it is very easy to take 
parts of one design and use them in the design of a different system. We will 
look further into: 

• The occurrence graph method. 
• Automatic code generation from CPN. 

We have reached the overall conclusion that CPN is well suited for the types of 
systems we develop and that it will be our main design method in our future de­
velopment. 



Chapter 2 

UPC Algorithms in 
ATM Networks 

This chapter describes a project accomplished by Henning Clausen and Peter Ry­
berg Jensen, Aarhus University, Denmark. The chapter is based upon the mate­
rial presented in [17]. The project was conducted in 1993. 

We have studied different Usage Parameter Control (UPC) algorithms for 
high speed Asynchronous Transfer Mode (A TM) networks. The purpose of the 
UPC algorithms is to prevent congestion. This is done by monitoring incoming 
traffic and marking the excess cells in such a way that they may be dropped, 
should congestion arise. During the standardisation of A TM networks, one of the 
issues to be decided is the choice of an appropriate UPC algorithm. To contrib­
ute to this discussion, we used timed CP-nets and the CPN tools to investigate 
four different UPC algorithms, proposed in the protocol literature. The choice 
of algorithm may depend upon the traffic type. However, as the ATM network is 
a multi-purpose network one algorithm has to be found, which is optimal under 
as many different situations as possible. Hence, we investigated the appropriate­
ness of all four algorithms for six different traffic types. The traffic was gener­
ated by a separate CPN model, which simulates Markov Chain Processes. This 
model is independent of the A TM network and the UPC algorithms, and hence it 
can be used to generate test data for other kinds of networks. 

Previous, theoretical work has proposed the Leaky Bucket algorithm and the 
Exponentially Weighted Moving Average algorithm to be the best UPC algo­
rithms. Surprisingly enough, our investigations do not confirm this proposal. In­
stead our results indicate that the Triggered Jumping Window algorithm is the 
best for a majority of traffic types. 

Section 2.1 contains an introduction to ATM networks and the purpose of 
UPC algorithms. Section 2.2 presents the CPN model of the four UPC algo­
rithms. Section 2.3 presents the CPN model of the traffic sources. Section 2.4 
discusses how simulation was used to investigate and compare the UPC algo­
rithms. Finally, Sect. 2.5 presents a number of findings and conclusions for the 
project. 



22 2 UPC Algorithms in ArM Networks 

2.1 Introduction to UPC Algorithms 

By the mid-1980s it became clear that the ISDN standard was unable to meet the 
emerging demand for broadband services and that it did not fully take advantage 
of the new high-speed transmission, switching, and signal processing technolo­
gies. Hence, the international standardisation organisations started work on 
Broadband ISDN (B-ISDN), which was supposed to incorporate both low­
speed and high-speed applications and be able to handle both bursty and continu­
ous traffic. As examples, it should be able to handle telephone connections re­
quiring 64 Kbps (kilobits per second) as well as multi-media applications de­
manding several hundred Mbps (megabits per second). To meet these require­
ments a flexible and fast underlying transfer mode is needed, and for this pur­
pose Asynchronous Transfer Mode (ATM) was chosen. 

With optical transmission media the performance bottleneck is no longer the 
transmission speed in the physical media. Instead it is the processing time in the 
network switches and the time it takes a signal to propagate from the sender to 
the receiver. Also the probability of transmission errors is very low when opti­
cal fibers are used. The need for complex (hence slow) transmission protocols 
that are capable of detecting and correcting transmission errors is reduced. ATM 
is defined as a simple transmission protocol with a minimum of processing done 
in each network node. Congestion control is moved from the individual nodes of 
the ATM network to the points where the users connect to the network. At these 
connection points the user traffic must be monitored to guarantee that the user 
does not exceed the reserved bandwidth. This is done to avoid problems for 
other users in the ATM network, e.g., lost data due to buffer overflow and 
longer transmission times. The monitoring is done by a Usage Parameter 
Control (UPC) algorithm, which detects excess cells and tags them, indicating 
that they may be dropped, should congestion arise. A UPC algorithm is appro­
priate, i.e., well suited for its purpose, if it: 

• detects and tags the correct amount of excess traffic, without interfering with 
non-excess traffic, 

• reacts quickly when an excess situation starts/stops, 
• is so fast that it does not introduce significant cell delays. 

2.2 CPN Model of UPC Algorithms 

Our CPN models are timed. This means that they have a global clock which 
represents the model time. Moreover, we allow each token to carry a time 
stamp which describes the earliest model time at which the token can be used, 
i.e., removed by a binding element. 

In a timed CP-net a binding element is said to be colour enabled when it 
satisfies the requirements of the usual enabling rule (Defs. 2.8 and 3.6 of 
Vol. 1). However, to be enabled, the binding element must also be ready. This 
means that all the time stamps of the tokens to be removed must be less than or 
equal to the current model time. To model that an activity/operation takes ilr 



2.2 ePN Model of upe Algorithms 23 

time units, we let the corresponding transition t create time stamps for its output 
tokens that are Ar time units larger than the clock value at which t occurs. This 
implies that the tokens produced by t are unavailable for Ar time units. 

The execution of a timed CP-net is time driven, and it works in a similar way 
to that of the event queues found in many programming languages for discrete 
event simulation. The system remains at a given model time as long as there are 
colour enabled binding elements that are ready for execution. When no more 
binding elements can be executed, at the current model time, the system advances 
the clock to the next model time at which binding elements can be executed. Each 
marking exists in a closed interval of model time (which may be a point, i.e., a 
single moment). The occurrence of a binding element is instantaneous. A much 
more detailed introduction to timed CP-nets and a formal definition can be found 
in Chap. 5 of Vol. 2. The use of timed nets allow us to investigate the perform­
ance of a model, i.e., the speed by which it operates. 

The CPN model of the UPC algorithms has the page hierarchy shown in Fig. 
2.1. The ATM page provides the most abstract view of the system. The Network 
page describes the ATM network. The User page describes the users of the net­
work. The two subpages Generate Traffic to the ATM network and Re­
ceive Messages from the UPC algorithm. The UPC page and its subpages model 
the Buffer Overflow Control and the four UPC Algorithms. The Initialisation 
page creates the initial marking of the CPN model by means of information read 
from a text file. 

A TM traffic is transferred in fixed-sized cells of the form shown below. The 
four fields with thick border lines stands for Virtual Path Identification, Virtual 
Channel Identification, Cell Loss Priority, and Information. 

[GFC I VPI I VCI I PT I CLP I HEi=1 INF I 
The other three fields are not interesting for our work, and hence they are not 
included in the CPN model. They stand for Generic Flow Control, Payload 
Type, and Header Error Control. 

Prime ( Initialisation) Prime 

Generate Traffic 

Receive Messages 

Buffer Overflow Control 

UPC Algorithms 

Fig. 2.1. Page hierarchy for upe algorithms 



24 2 UPC Algorithms in ATM Networks 

The above structure of ATM cells is modelled by the following colour set decla­
rations: 

color VPI = Int; 
color VCI = Int; 
color CLP = Bool; 
color Connection = record vpi: VPI * vci: VCI; 
color Data = Int; 
color Message = with UPCCellLoss; 
color Signal = record con: Connection * mes: Message; 
color Information = union data: Data + signal: Signal; 
color Cell = record con: Connection * clp:CLP * inf:lnformation timed; 

We use integers to represent the VPI and VCI fields, while we use a boolean for 
the CLP field. The latter is used to tag those cells that may be dropped, should 
congestion arise. A Connection is a record containing a VPI and a VCl. We are 
not interested in the actual Data to be transferred via the A TM cells. Hence, we 
abstract away the data and replace it by an integer, which is used to recognise the 
cell during our subsequent analysis of delays, tagging, etc. In our model there is 
only one kind of Message to be generated by the network. It informs the user 
that UPC cells have been lost at the specified Connection. Finally, we see that the 
Information in a Cell either is Data (to be transferred over the network) or a 
Signal (to the user). 

The UPC page is shown in Fig. 2.2. It receives cells from the User page and 
passes these to the Network - after performing BufferOverflowControl and 
UPCAlgorithm enforcement. 

Now let us describe the four UPC algorithms. Three of the algorithms build 
on window mechanisms. A window is a time period, during which the algorithm 

Fig. 2.2. CPN page for UP C 



2.2 CPN Model of UPC Algorithms 25 

counts the number of cell arrivals. By comparing the count to a given limit, the 
algorithm determines whether an excess situation has happened. 

The EWMA algorithm uses a jumping window. This means that a new win­
dow is started as soon as the old has finished. At the end of each window a new 
limit is computed as an exponentially weighted moving average of all pre­
vious arrival counts: 

I Limit == 20 I Limit == 15 I Limit == 17 Limit == 20 I ........... . 

time .. 

The TJW algorithm uses a triggered jumping window. This means that when 
a window has finished, a new one is not started until the moment when the next 
cell arrives. The same limit is used for all windows: 

I Limit == 20 II Limit == 20 J I Limit == 20 I I Limit == 20 ] 

time .. 

The SW algorithm uses a sliding window which moves continuously along the 
time axis. Cells are added to the window when they arrive, but removed again 
after a time period determined by the width of the window. The same limit is 
used for all windows: 

The LB algorithm behaves like a leaky bucket where the content runs out of 
the holes in the bottom in a steady stream. When the bucket is full new cells are 
tagged as excess. Otherwise they just increase the level in the bucket. More de­
tails about the four UPC algorithms can be found in [19] and [48]. 

The UPCAlgorithms page is shown in Fig. 2.3. It has five places. The two 
upper places are input and output ports (assigned to sockets in Fig. 2.2). Each 
token on these places represents a Cell and carries a time stamp indicating the 
cell arrival time at the UPC/network. 

When a cell arrives at the UPC it has to be checked for excess, i.e., violation 
of the agreed bandwidth. This is done by transition UPCCheck. The Algorithm 
place specifies the UPC algorithm to be used, while two other places specify dif­
ferent Parameters used by the algorithms and the times for Updates of the win­
dowlbucket. 

During a simulation the Algorithm place contains a single, fixed token. This 
means that we use one UPC algorithm at a time. By modelling all algorithms on 
the same CPN page, it becomes easier to see the differences and similarities of 
the four algorithms. Moreover, we can switch between them, simply by changing 
the token on Algorithm. The colour set of this place is determined by the fol­
lowing declarations: 



26 2 upe Algorithms in ATM Networks 

color EWMA = product Real * Real; 
color TJW = Real; 
color SW = Real; 
color LB = lnt; 
color Algorithm = union ewma:EWMA + tjw:TJW + sw:SW + Ib:LB; 

EWMA, TJW and SW have a real which determines the width of the window. 
The second real in EWMA is part of the formula to calculate the new limit. The 
integer in LB determines the size of the bucket (the size of the holes are deter­
mined from the bandwidth). 

To perform the UPC Check it is necessary to know the status of the connec­
tion to which the arrived cell belongs. This information is stored in place Pa­
rameters, which has a token for each active connection: 

color Parameters = record bandwidth: lnt * count: Int * limit: Int * 
period: Real * history: Real; 

color ConnxParams = product Connection * Parameters timed; 

The Parameters specify the bandwidth, the current cell count, the limit, the time 
period between updates, and the history of previous arrivals. The latter is used 
by EWMA in its calculation of new limits. 

cell 
UPC Input )---...;.;.;~--.. 

Cell 

case alg of 
ewma(rl,r2) => empty 

I tjw(r) => if (#count par) = 0 
then I' (#con cell) 
else empty 

I swirl => 1 '(#con cell) 
I Ib(i) => empty 
@+ (#period par) 

case alg of 
ewma(rl.r2) => I'conn 

I tjw(r) => empty 
I swirl => empty 
I Ib(i) => I 'conn 
@+ (#period par) 

conn 

alg 

alg 

if Excess(par) 
then SetCLP(cell) 
else cell 
@+ CeIlDelay(alg) 

case alg of 

UPCtoNET 
Cell 

(#con cell,par) 

ewma(rl,r2) => (#con cell,Incr(par)) 
I tjw(r) => (#con cell,Incr(par)) 
I swirl => (#con cell,Incr(par» 
I Ib(i) => (#con cell,CondIncr(par)) 
@+ UPCCheckDelay(alg,par) 

(conn,par) 

case alg of 
ewma(rl,r2) => (conn,ResetAndUpd(par,alg» 

I tjw(r) => (conn,Reset(par)) 
I swirl => (conn,Decr(par)) 
I Ib(i) => (conn,Decr(par» 
@+ UPCUpdateDelay(alg) 

Fig. 2.3. ePN page for UPC Algorithms 



2.2 CPN Model of UPC Algorithms 27 

Transition UPC Check examines whether the incoming traffic complies with 
the reserved bandwidth. The Excess function (in the upper right-hand arc ex­
pression) compares the count and the limit. If the count is larger than or equal to 
the limit, the CLP bit is set. Otherwise, the cell passes without modifications. In 
both cases the cell experiences a small Cell Delay, while the necessary calcula­
tions are done. The length of the delay depends on the algorithm, and has been 
determined by considering the sequence of actions necessary to perform the cor­
responding calculations. Our delays reflect the performance of ordinary hard­
ware technology. For instance, an addition has been set to take 10 nanoseconds. 
The effect of these delay assumptions turns out to be minor and therefore we 
will not go into details with this subject. An elaborate discussion of the delay 
values can be found in [18]. 

Transition UPC Check returns the Algorithm token without changing it. How­
ever, for the Parameters token the count is incremented by 1. This is done by the 
functions Incr and Condlncr (the latter only adds 1, when count < limit). The 
UPCCheckDelay describes the time used to process the cell. It is equal to the 
Cell Delay plus the time used to update the Parameters. 

Two of the window algorithms need to record the arrival time of some cells. 
This is done at place Updates, which has the colour set: 

color Updates = Connection timed; 

The time stamps tell us when updates of the windowlbucket is to be performed. 
For the TJW algorithm we put a token on Updates each time the count is in­
creased from 0 to 1. This indicates that a new window has been created. The 
time stamp of the token expires after a period which is equal to the width of the 
window. For the SW algorithm we put a token on Updates for all cell arrivals. 
The time stamp expires when the cell is too old to be part of the current window. 

~ Algorithm 
Algorithm --------­

alg 

cell 

Check for 
Buffer 

case alg of 
sw(r) => if Overflow(par) 

then 1 'Signal(UPCCellLoss,cell) 
else empty 

I otherwise => empty 
UPC to USER (#con cell,par) 

~ Parameters .*----'-----+t.~O~v~er;!:flo~w~ Cell 

ConnxParams case alg of 
sw(r) => if Overflow(par) 

then empty 
else l'cell 

I otherwise => r cell 

Fig. 2.4. CPN page for Buffer Overflow Control 



28 2 UPC Algorithms in ATM Networks 

Occurrence of transition UPC Update (in the lower part of Fig. 2.3) is trig­
gered by the tokens on Updates. The transition reads information from Algo­
rithm and Parameters and modifies the latter. For a TJW algorithm the count is 
Reset to zero. For SW and LB the count is decremented by one. For EWMA the 
situation is more complicated, since we also have to calculate the new limit and 
update the history. All this is done by function Reset And Update which is de­
clared as follows: 

fun ResetAndUpd(par: Parameters, ewma(period, gamma» = 
{bandwidth = #bandwidth par, 

limit = NewLimit(par, period, gamma), 
count = 0, 
period = #period par, 
history = NewHistory(par, period, gamma)}; 

For EWMA and LB, updates are done with fixed intervals, totally independent 
of cell arrivals. For these algorithms UPC Check never adds tokens to place Up­
dates. Instead there is always exactly one token (per connection), and this token 
is put back (with a new time stamp) when UPCUpdate occurs. 

The Buffer Overflow Control page is shown in Fig. 2.4. The places for Algo­
rithm and Parameters are the same as in Fig. 2.3. This is achieved by means of 
two global fusion sets. From the two case-statements, we see that overflow is 
relevant only for the SW algorithm. Overflow situations are detected by means 
of an ML function Overflow which simply compares a cell count to a buffer 
limit. The user is notified by a UPCCellLoss signal represented by a token at 
place UPCto USER. 

Page Initialisation is shown in Fig. 2.5. It contains a single transition which 
always occurs in the first step of each simulation and then never again. The code 
segment reads a text file by means of a set of standard input functions. Based on 
the information in the file, a number of tokens are created at the output places, 
which all belong to global fusion sets. In this way, tokens are distributed all over 
the CPN model. The binding of the five variables is determined by the code 
segment. They are all multi-set variables. This means that they are bound to 

Start 
E 

e 
Create 
Initial 

Marking 

@] 

InitAlg ~ 

~ InitPar ConnxParams 

InitUPd~ 

~ InitCount pdates 

~~ 
~ ConnxCount 

Fig. 2.5. CPN page for Initialisation of the CPN model 



2.2 CPN Model of UPC Algorithms 29 

multi-sets of token colours. By means of the mechanism described above, it is 
easy to switch between different initial markings. The user simply modifies the 
text file, while nothing has to be changed in the CPN model. 

Page Generate Traffic works in a similar way as Initialise. It reads the time 
stamps to be used for cell arrivals from a text file generated by the CPN model 
described in Sect. 2.3. By using two separate CPN models we save simulation 
time, since it is only necessary to generate each sequence of cell arrivals once, 
instead of generating it during the analysis of each of the four UPC algorithms. 
This also means that we use totally identical sequences of cells to analyse all four 
UPC algorithms. 

Some of our simulations deal with more than 200 000 cells. To ease the sub­
sequent analysis of delays, tagging, etc., we store the results of each simulation in 
a text file. This is done by a code segment on the Network page. For each cell we 
record the cell number, the arrival time, and the value of the CLP field. The 
data on the output file is analysed by means of a number of simple ML functions 
which generate input to a spreadsheet and charting program. 

2.3 CPN Model of Traffic Sources 

We use a discrete-state continuous-time Markov Chain Process (MCP) to gener­
ate our traffic. The bit rate is divided into a finite number of discrete levels: 

0,1,2, ... , m-l, m. 

The rate at level i is i *a, where a is a constant. With negative exponentially dis­
tributed intervals, the level is changed by one - upwards or downwards. At level 
i, the next change is determined by two stochastic variables up and down: 

up - e-«m-i)*u) 

down - e-(i*d). 

u and d are two constants, while e is the base of the natural logarithm. Every 
time the MCP enters a new level, an outcome of up and down is obtained. If 
down < up, the next change is downwards, with waiting time down. Otherwise, 
it is upwards, with waiting time up. The mean of a negative exponential function 
e-P is p -1. Hence, high levels have a large chance of being decremented, while 
low levels have a large chance of being incremented. The MCP is illustrated in 
Fig. 2.6. Each node represents a level with the inscribed bit rate. The arcs repre­
sents the changes from one level to another. 

mu (m-1)u (m-2) u 2u u 

d 2d 3d (m-1) d md 

Fig. 2.6. State/transition diagram for Markov Chain Process 



30 2 UPC Algorithms in ATM Networks 

The MCP has an equilibrium which depends on the parameters m, a, u, and d. 
The equilibrium level has a binomial distribution with parameters m and 
u / (u + d). By choosing an outcome of this distribution as the start level, we im­
mediately reach the equilibrium with the following mean and variance: 

Mean(i * a) = m * a * __ u 
u+d 

u*d 
Var(i*a) = m*a2 * ---

(u+df 

From this we see how to control the MCP. If u/(u+d) is close to 0, the mean 
bandwidth is also close to 0. If u/(u+d) is close to 1, the mean bandwidth is 
close to the maximum, m * a. By introducing more levels (i.e., by increasing m, 
without changing m * a), we decrease the variance. 

Our CPN model of the traffic sources is simple. It only has three pages. The 
first page is used for Initialisation of the model by reading parameters from a 
text file. It has a form which is similar to Fig. 2.5. The second page models the 
Markov Chain Processes, while the third page records the outcome of the Traffic 
Source by producing a text file which is used as input for the CPN model in Sect. 
2.2. 

Page Markov Chain Processes is shown in Fig. 2.7. It uses the following col­
our set declarations: 

(mcp,change) 

nextmcp 
@+ NextCell(nextmcp) 

mcp 

(#con mcp,cellsAA[ e]) 

(nextmcp,nextchange) @+ delay 

---------------------------------------------------------------1 
@] input (mep,change); 

mep @ ignore 

output (nextmcp,nextehange,delay); 
action 

let 
val nextmcp = UpdateLevel(mep,ehange); 
val (nextehange,delay) = NextChange(nextmep); 

in 
(nextmep,nextehange,delay) 

end; 

mcp @+ NextCell(mcp) 

(#con mep,cells) 

Fig. 2.7. CPN page for Markov Chain Processes 



2.3 ePN Model of Traffic Sources 31 

color TrafficType = with CBR I Dataflow I Databurst I 
Videophony I Voice I Video; 

color MCP = record level: Int * con: Connection * traffic: TrafficType * 
m: Int * a: Int * u : Real * d: Real timed; 

color Change = with Up I Down; 
color MCPxChange = product MCP * Change; 
color Cells = list E; 
color ConnxCells = product Connection * Cells; 

For each Connection, the input traffic is generated by one or more MCPs. 
Hence, we have a number of MCPs, which each is represented by a token on 
place MCP. This token specifies the current level, the Connection, the Traf­
ficType, and the parameters m, a, u, and d. Place NextChange also has a token 
for each MCP. This token specifies the next change of level (via the second com­
ponent of the colour) and the time for this change (via the time stamp). Finally, 
place New Cells has a token for each Connection. The second element in the to­
ken colour is a list in which each element represents an arriving celL 

Each occurrence of transition Generate Cell corresponds to a cell arrival. It 
adds an element to the correct list at place New Cells, i.e., the list that corre­
sponds to the connection specified in mcp. The MCP token is returned with a 
new time stamp - specifying the time of the next cell arrival (from the corre­
sponding MCP). The time stamp is determined by means of an ML function 
Next Cell declared as follows: 

val CellSize = 424; 

fun Time(bandwidth:lnt) = (real(CellSize)/(real(bandwidth) * 1024.0»; 

fun NextCell(mcp : MCP) = 
let 

in 
val bandwidth = (#level mcp) * (#a mcp); 

case #traffic mcp of 
CBR => Time(bandwidth) 

I Dataflow => RandomNexp(1.0/Time(bandwidth» 
I Databurst => Time(bandwidth) 
I Videophony => Time(bandwidth) 
I Voice => RandomNexp(1.0/Time(bandwidth» 
I Video => Time(bandwidth) 

end; 

When transition Change Level occurs (for a given MCP) the level changes, as 
specified by the token at Next Change. The MCP token is updated to reflect the 
new level, and the succeeding level change is stored in NextChange. The new 
MCP token and the new Next Change token are calculated in the code segment by 
means of two ML functions Update Level and NextChange, declared as shown 
below. Note that transition Change Level ignores the time stamps of the tokens at 
place MCP. This means that the tokens are always ready. 



32 2 UPC Algorithms in ATM Networks 

fun UpdateLevel(mep:MCP, Down: Change) ::: 
{level::: (#level mep) - 1, 
con::: #eon mcp, traffic ::: #traffic mcp, 
m ::: #m mep, a ::: #a mep, u ::: #u mep, d ::: #d mep} 

UpdateLevel(mep: MCP, Up: Change) ::: 
{level::: (#level mcp) + 1, 
con::: #eon mep, traffic ::: #traffie mcp, 
m::: #m mep, a::: #a mep, U::: #u mcp, d::: #d mcp}; 

local 

in 

fun CalcNextChange(up: Real, down: Real) ::: 
if up::: 0.0 then (Down, RandomNexp(down» 

else if down::: 0.0 then (Up, RandomNexp(up» 
else let 

in 

val nextup::: RandomNexp(up); 
val nextdown::: RandomNexp(down); 

if nextdown < nextup then (Down, nextdown) 
else (Up, nextup) 

end; 

exception NextChangeError; 
fun NextChange(mcp: MCP) ::: 

let 
val down::: real(#level mcp) * (#d mep); 
val up ::: real«#m mcp) - (#level mcp» * (#u mcp); 

III 

case #traffic mep of 
CBR:::> raise NextChangeError 

I Dataflow => raise NextChangeError 
I otherwise => CalcNextChange(up, down) 

end 
end; 

Page Traffic Source is shown in Fig. 2.8. The lower tranSItion inspects the 
New Cells produced by the Markov Chain Processes, and records them on a text 
file. We may have several MCPs for a connection, and hence it is possible that 
two cells are generated very close to each other. On a physical network each cell 
has an extension and hence there is a Limit on how close the cells can be. This is 
achieved by place Wait. The limit is set to 323 nanoseconds (which corresponds 
to a 1.28 Gbps network). 

We have used six different Traffic Types - providing a good variation over 
the kinds of traffic that can appear on a real A TM network. The parameters are 
shown in Fig. 2.9. The values for a are in kilobits per second. The last two rows 
indicate whether there is more than one level, and whether the cells are gener­
ated by a negative exponential function (as explained at the beginning of this sec­
tion) or by a continuous source (with a constant time interval between cells). For 



2.3 CPN Model of Traffic Sources 33 

video we use two MCPs. A detailed explanation of the traffic types and their pa­
rameters can be found in [18]. 

When the CPN model was finished, we investigated each traffic type by per­
forming an automatic simulation with 50000-3500000 transitions occurring. 
On a Macintosh Quadra 950 each simulation took 1-100 hours. With the new 
CPN simulator described in Chap. 4, the simulations would have been many 
times faster. 

Para­
meters 

m 

a 

u 

d 

Markov 
Chain 

Processes ~ 

(conn,e: :cells) (conn, cells) 

conn @+ Limit 

CBR 

10000 

conn 

-------------------------------------------------
@] input conn; 

action 
output( !outfile, 
(mkst_col'Connection conn)"Tab" 
(makestring( time()))); 

Fig. 2.8. CPN page for Traffic Source 

Data- Data- Video- Voice Video 

flow burst phony Low High 

10 50 10 2 

2000 10 000 490 I 64 ,4000 17000 

0.25 

I I 1

1.0 3.18 I 0.5 I 3.18 

- 10.0 0.815 t_~5 I 0.815 1.0 

)--:_L_h-_:-_:~:_~-s_+~-----N---O~~:~~-;-o---r ~,,-- ~~ 0 Yes_ =_Ye~ 
Cell J I I 

L.S_p=--ac_i_n..c.g-'-_C_o_n_t----'-_N __ e~xp Cont Cont I Nexp I Cont Cont 

Fig. 2.9. Parameters for six different traffic types 



34 2 UPC Algorithms in ArM Networks 

2.4 Simulation of UPC Algorithms 

In this section we describe how automatic simulations were used to investigate 
the appropriateness of the UPC algorithms. Here, we only present an overview 
of our results. A much more thorough description and discussion can be found in 
[17], [18], and [19]. 

We investigated six different kinds of traffic, covering a broad variety of the 
traffic types that are expected to be found in ATM networks. As we have four 
UPC algorithms we carried out a total of 24 automatic simulations. Each simula­
tion covered three seconds of real time. They each contained 50 000 -2 000 000 
occurring transitions and took 1-8 hours on a Macintosh IIfx. With the new CPN 
simulator described in Chap. 4 (and a more modern machine), each simulation 
would take only a few minutes. 

Figures 2.10 and 2.11 illustrate how good the different UPC algorithms are 
to tag the correct amount of cells for a videophony source. We see the total input 
traffic and the amount of tagged output traffic from each UPC algorithm. The 
horizontal lines in the upper part of the figures indicate the reserved bandwidth. 
The ideal algorithm only tags what is above the horizontal line. Only a small part 
of the total simulation is shown. 

It can be seen that EWMA tags too much, while SW tags far too much. The 
other two UPC algorithms provide results that are close to the correct answer. 
The main difference is that LB is more flexible than TJW. For short periods, 
LB allows small amounts of excess traffic, without tagging. Whether this is a 
good or bad property depends on the application of the network. Similar results 

5000.0 ,--------,------,------------.-----,----------, 

4000.0 f----f-----\--'-=='-'=--==:o--;d---\v.=-;----+--i---H 

00 
a. 3000.0 
:S! 
:c 
'5 .§ 

" ~ 2000.0 
CD 

1000.0 

" I • I \I~ " 

:' ,,\1 t .... 
I 'EWMA I , , , 
I , 

'TJW \ , , 0.0 '--__ C-------L_-"-'~_.l..-___ -l.---'---'-~_J...!L ___ -' 

0.4 0.6 0.8 1.0 1.2 1.4 
Time(sec) 

Fig. 2.10. Tagging of excess cells for EWMA and TJW 



2.4 Simulation of upe Algorithms 35 

were found for the other five traffic types, and this gives us the first row in Fig. 
2.12. 

Next, we investigated how fast the different UPC algorithms react, i.e., detect 
the start/stop of an excess situation. From Figs. 2.10 and 2.11, it can be seen that 
SW and TJW start tagging cells immediately when an excess situation arise, 
while EWMA and in particular LB are slower to start. When the excess situation 
stops, all algorithms continue tagging for some time. EWMA stops later than the 
other algorithms. Similar results were found for the other five kinds of traffic 
types, and hence we get the second row of Fig. 2.12. The rating of LB can be 
discussed, since immediate start/stop of tagging prevents flexibility. 

Finally, we investigated how much the different UPC algorithms delay the 
ATM cells. The delays were calculated by means of the time stamps recorded in 
the input and output files. The results of this investigation are shown in the third 
row of Fig. 2.12. For all bandwidths SW delays the ATM cells. EWMA and LB 
introduce delays that depend on the bandwidth. The maximum delay of EWMA 
is far too big to be acceptable, while those of LB are more reasonable. TJW is 
the only UPC algorithm that does not introduce any delays. 

Based on the results described above (summarised in Fig. 2.12), we concluded 
that EWMA and SW are inappropriate as UPC algorithms. Hence, we concen­
trated our further work on TJW and LB, which we investigated in more detail 
- by varying the window width and bucket size, respectively. For each of the 
two algorithms we investigated four parameter values, yielding eight simulations 
for each of the six traffic types. Results from this investigation can be found in 
[17] and [18]. 

5000.0 r------,-----...,-----,-------.-------., 

4000.0 

Ul c. 3000.0 .0 
C 
;; 
"tl 
.~ 

"tl I 
c 2000.0 <1l 
In 

I I 
I :sw I I 
I I 

I I 

I I 

I I 

I I 

1000.0 I I 

I I 

I I 

I I 

0.0 '-----''--''--'----''--~ 

I I I I 
I LB I I I , 
I I I I , _____ J I ~ 

I I I , I I 
---~---'-- --1,_ 

0.4 0.6 0.8 1.0 1.2 1.4 
Time(sec) 

Fig. 2.11. Tagging of excess cells for SW and LB 



36 2 UPC Algorithms in ATM Networks 

EWMA TJW SW LB 

** **** * **** 

Tagging of Tags too much Tags correct Tags far Tags correct 
excess cells amount of cells too much amount of cells 

(inflexible) (flexible) 

* *** *** ** 

Speed of Starts too late Starts OK Starts OK Starts too late 

reaction Last to stop Stops too late Stops too late S tops too late 

* **** ** *** 

Delay of cells Large delays, No delays Small delays, Small delays, 

bandwidth bandwidth bandwidth 

dependent independent dependent 

Summary * *** * ** 

Excellent = ****, Good = ***, Average = **, Bad = * 

Fig. 2.12. Comparison of the four UPC algorithms 

2.5 Conclusions for UPC Algorithms Project 

In [48] it is argued that LB and EWMA are the most promising algorithms, be­
cause they are the most flexible. The arguments are based on an analytic solution 
of an equation system of the UPC algorithms, using a bursty source with low bit 
rate. Our results are based on a variety of bit rates and both long and short du­
ration excess situations, covering many combinations of mean, peak, peak dura­
tion, and variance. We also investigated the delay of the A TM cells and the speed 
of reaction - issues not considered in [48]. 

From our simulations, we conclude that SW and in particular EWMA are in­
appropriate as UPC algorithms. EWMA tags too much in situations with large 
excess and it introduces cell delays of unacceptable length. LB introduces small, 
but bandwidth dependent, cell delays and it starts and stops tagging too late. TJW 
tags the correct amount of excess cells and reacts quickly to an excess situation. 
It stops tagging too late, but does not introduce cell delays. Hence, TJW is the 
best of the available UPC algorithms - although not perfect. 

The use of a graphic modelling language gave us a better overview and more 
modelling power than an ordinary textual language, without losing the possibility 
of making simulations. It was easy to model the different parts of the ATM net­
work at the required level of abstraction. The expressive power of the ML lan­
guage made it easy to describe the details of the UPC algorithms. The hierarchy 



2.5 Conclusions for UPC Algorithms Project 37 

constructs made it straightforward to combine the individual parts into a full 
model. It was also straightforward to model the Markov Chain Processes used to 
generate traffic. The possibility of using text files for input and output turned 
out to be very useful. It allowed us to transfer data from the traffic model to the 
UPC model, and from the UPC model to appropriate analysis tools. 

We found that the time concept of CP-nets has a sound basis and is well inte­
grated with the non-timed Petri-net concepts. It was easy to model the different 
delays by timed CP-nets. When we made our experiments there was no tool sup­
port for timed occurrence graphs. Otherwise, we would have liked to use these 
in our investigation. 

It is easy to incorporate a new UPC algorithm in our model. In [18] it is out­
lined how this can be done for the Virtual Scheduling algorithm. The purpose of 
our model was to compare the UPC algorithms. If the purpose had been to spec­
ify the algorithms, we would have used a separate page for each algorithm, in­
stead of the case-statements on page UPCAIgorithms. That would have given a 
more readable but less compact model. 



Chapter 3 

Audio/Video System 

This chapter describes a project accomplished by Niels T. S¢rensen, Bang & 
Olufsen AlS, Struer, Denmark, in cooperation with S¢ren Christensen and lens 
B. l¢rgensen, Aarhus University, Denmark. The chapter is based upon the mate­
rial presented in [14]. The project was conducted in 1995-96. 

The purpose of the project was to investigate whether CP-nets and the CPN 
tools would be useful to specify, validate, and verify the protocols that Bang & 
Olufsen (B&O) use to connect their equipment. B&O is a renowned manufac­
turer of high-quality audio and video products. The BeoLink system distributes 
sound and vision throughout a home via a network. In this way, e.g., while doing 
the cooking in the kitchen, a person can remotely select and listen to a track 
from a CD, loaded at the CD player in the living room. 

In the first part of the project, an engineer from B&O used the CPN editor to 
build a CPN model of a central part of the BeoLink protocol. While the model 
was being developed, it was validated by means of simulation. When the CPN 
model was finished, it was verified by means of occurrence graph analysis. No 
new errors were found, but a number of known problems were demonstrated, 
e.g., that a certain kind of installation error causes the system to malfunction. In 
the second part of the project, the B&O engineer developed a slightly modified 
version of the protocol. Again, simulation and occurrence graphs were used to 
demonstrate correctness. As part of this, it was shown that the two versions of 
the protocol are compatible, in the sense that devices using the new version can 
coexist, without problems, with devices using the old version. 

The entire project lasted for nine months. Nearly one man-year was used, 
half of this by an engineer from B&O and the other half by members of the CPN 
group at Aarhus University. Based on the experiences from the project, CPN has 
been included in the set of methods that B&O uses for specification, validation, 
and verification of protocols. 

Section 3.1 contains an introduction to the BeoLink system and the project 
organisation. Section 3.2 presents the CPN model of the selected part of the 
BeoLink system. Section 3.3 discusses how the CPN model was validated by 
means of simulation. Section 3.4 describes verification by means of occurrence 
graphs. Finally, Sect. 3.5 presents a number of findings and conclusions for the 
project. 



40 3 AudioNideo System 

3.1 Introduction to AudioNideo System 

The Danish company Bang & Olufsen A/S (B&O) has a long tradition of pro­
ducing sophisticated audio and video products. B&O employs more than two 
hundred developers, of which fifty work full-time with software. An increasing 
part of the software development deals with the protocols used to connect the 
different devices. 

A relatively new invention of B&O is the BeoLink concept. A home equipped 
with a BeoLink system has a central room, typically the living room, where 
audio/video sources such as a radio, a CD player, a cassette recorder, a TV set, 
and a video recorder are located. The idea is that from the other rooms, such as 
the kitchen or the children's room, the audio/video sources of the central room 
can be controlled and accessed remotely. In this way, there is no need to buy, 
e.g., two CD players. Figure 3.1 sketches a house in which a BeoLink network 
connects four different audio/video devices. The figure is actually the top level 
of the ePN model. It contains eight places and five substitution transitions, of 
which Network is drawn in a rather non-standard way. 

The project began with intensive CPN training of three engineers from B&O. 
They attended a six-day course, distributed over three weeks. During the course, 
practical application of eP-nets was emphasised much more than theoretical and 
mathematical aspects. The format was a mixture of lectures and practical exer­
cises with the ePN tools. The first two days introduced the basic ePN concepts 
through small toy examples, using some of the introductory chapters from 
Vol. 1 of this book. Approximately half the time was spent getting hands-on ex­
perience at the computers, modifying and simulating small models. The engi­
neers were experienced C-programmers, but unacquainted with the Standard ML 
language used by the CPN tools. Therefore, some time was devoted to an ele­
mentary introduction to this language. Also, other examples on industrial ePN 
projects were presented, to demonstrate the potential of the method. The two 
days in the second week covered more advanced topics such as hierarchical CPN 
models and CPN models with time. Again, half of the time was used at the com­
puters, playing with small examples. Finally, each of the three engineers used the 

Fig. 3.1. BeoLink network connecting four audio/video devices 



3.1 Introduction to AudiolVideo System 41 

last two days of the course to model and simulate a small system that he already 
knew from his daily work at B&O. During the course, each engineer was as­
sisted by a person who was fluent in CP-nets and the use of the CPN tools. In this 
way, technical problems with the use of the CPN language and the CPN tools 
were solved in a fast and efficient manner. From this and similar courses, it is 
our experience that most engineers greatly benefit from learning the CPN 
method and the CPN tools by practical experiments with small systems chosen 
from an application area they already are familiar with. In parallel with the CPN 
course for the B&O engineers, the CPN group at Aarhus University learned 
about the BeoLink concept by reading technical documentation and getting dem­
onstrations. 

At the end of the CPN course, two of the projects from the third week were 
selected for further work. Each project was pursued by one of the B&O engi­
neers, while the third engineer was assigned to other duties in the company. In 
this chapter, we concentrate on one of the two projects. It dealt with the lock 
management protocol, which is a vital part of the BeoLink system. It is used to 
prevent different kinds of disorder, e.g., that track 11 on a CD becomes selected 
when two users simultaneously request track 1. The basic idea is that the proto­
col administrates a single logical key, also called a lock, which must be re­
quested by any device before executing certain actions. Examples of such critical 
actions are selection of audio/video source (e.g., change from radio to CD 
player) and control of source (e.g., change of track on a CD). 

The device that currently possesses the key is called the lock manager. The 
devices exchange messages over the network. These messages are called tele­
grams. Moreover, the devices interact with different users. These actions are 
called events. Figure 3.2 shows a typical sequence of actions. It could occur, 
e.g., when User 1 wants to change track on a CD player, Device 1. To do this the 
user presses a button on the remote control, generating a Key Wanted event at 
Device 1. This device is not the current lock manager and hence it requests the 
key by broadcasting a Key Request telegram over the network. Device 3 is the 
lock manager. It is ready to give away the key, and hence it sends a Key Transfer 
telegram to Device 1. When this telegram is received, Device 1 becomes the new 

User 1 Device 1 Device 2 Device 3 Device 4 

___ .!S:r~~!:!:~ __ _ 
KeyRe uest 

------~----~~----~ KeyT nsfer 

New Lock anager 

KeyReady 

Fig. 3.2. A typical message sequence for the lock management protocol 



42 3 AudioNideo System 

lock manager, and it acknowledges the receipt of the key by sending a New Lock 
Manager telegram to Device3. Then the actions are finished by a KeyReady 
event, implying that the requested change of CD track can take place. 

There are, of course, many other cases which must be dealt with. What hap­
pens if the lock manager is not ready to give away the key? What if the key is 
already reserved for another device? What if the key is lost? By creating a CPN 
model of the protocol we get a sound basis for dealing with all these problems. 

Parallel to the six-day CPN course, a member of the CPN group made a 
rough sketch of a CPN model for the lock management protocol. The input for 
this work was a state/transition matrix and a flow diagram, extracted from the 
existing specification. The CPN model made the discussions with the B&O engi­
neer much more concrete. He could immediately participate in the discussions of 
the pros and cons of this model. After the CPN course came a period with close 
and frequent contacts. Within the next month, the B&O engineer spent eight full 
days at our department, creating the first parts of his CPN model. During these 
visits he was primarily working on his own. However, when problems were en­
countered, he got assistance from a person within the CPN group. In this way, he 
made a very smooth and effective start on the project. 

The lock management project had a duration of nine months, during which 
the B&O engineer used 50% of his time on it. Nearly every week, the engineer 
met with a person from the CPN group. This provided an opportunity to discuss 
different ideas and to solve technical problems. In addition, there were monthly 
meetings involving a larger group of people and with more general agendas. At 
these meeting, we discussed the CPN models and the simulation results 
- generating a considerable number of proposals for improvements, extensions, 
and further experiments. Moreover, the project plan was discussed and further 
developed. 

In chronological order, the focus of the lock management project was on 
modelling, on simulation, and on occurrence graph verification. Modelling and 
simulation were done by the B&O engineer alone, while the occurrence graph 
verification was done in cooperation with the CPN group. This was primarily 
due to the fact that the occurrence graph tool was rather new, and hence there 
was only limited experience with its use in larger projects. At the end of the 
project, a modified version of the protocol was designed and analysed by simu­
lation and occurrence graphs. During this phase the engineer worked totally on 
his own. 

3.2 ePN Model of AudioNideo System 

The CPN model of the lock management protocol has the page hierarchy shown 
in Fig. 3.3. 

The BeoLink page contains the most abstract view of the system. It has al­
ready been shown in Fig. 3.1. The Network page models the primitives for 
sending, receiving, and broadcasting telegrams. The Device page models selected 



3.2 ePN Model of AudiolVideo System 43 

aspects of the individual devices. The User page represents the users of the de­
vices. The details of the lock management protocol are modelled by the 
LockManagement page and its subpages. The first five subpages describe how 
five different kinds of telegrams are handled. The next two subpages describe 
how to handle incoming events from users, who want to either get the key or 
release it. The last subpage handles time-outs. There are four instances of the 
Device page (and all its subpages) - one for each device. In total, the BeoLink 
system is modelled by 13 pages, with 46 page instances (for a system with 4 de­
vices). 

Now let us consider page Key Request shown in Fig. 3.4. Incoming telegrams 
are represented by a token on place Receive Buffer. The colour set is a list of 
telegrams. They are added to the end of the list and removed from the front, as 
explained in Fig. 1.18 of Vol. 1. This guarantees that the telegrams are served in 
a FIFO manner. When the list is non-empty a transition on one of the subpages 
of LockManagement becomes enabled. The transition in Fig. 3.4 handles 
Key Request telegrams in the LockManagement part of the protocol. This can be 
seen from the first line of the guard (situated inside the transition). Other kinds 
of telegrams are handled by transitions on other subpages. 

When a telegram is received, the actions to be performed depend upon the 
function-lock state of the device (represented by place FLstate), the configura­
tion of the device (represented by place FLconfig), and/or a timer (represented 
by place FLtimer). The action may change the state of the device (by modifying 
the colour of the token on place FLstate), send a telegram (by appending the 

Fig. 3.3. Page hierarchy for audio/video system 



44 3 AudioNideo System 

telegram to the list of telegrams in the colour of the token on place Send Buffer), 
and/or set the timer (by adding a token to place FLtimer). The case-statements in 
the arc expressions in Fig. 3.4 cover three different situations: 

• If FLstate = Key Free, the device is the current lock manager and willing to 
give the key away. The state of the device changes to Key Trans and a 
Key Transfer telegram is sent to the requesting device. The contents of the 
telegram are described by the second line of the guard (which determines the 
value of a variable tlg1 used to generate the outgoing telegram). A timer is 
started with a duration determined by the constant Trans Time Out. 

• If FLstate = Key Used, Key Trans or Key Trans SE, the device is the current 
lock manager, but unable to give the key away, because it is in use or already 
in the process of being transferred to another device. The state of the device 
remains unchanged and a Key Transfer Impos telegram is sent to the requesting 
device. The contents of the telegram are described by the third line of the 
guard (which determines the value of a variable tlg2 used to generate the out­
going telegram). 

• For all other FLstates, the device is not the current lock manager, and no ac­
tion is taken. This means that the incoming telegram is consumed, without 
changing state, without sending a reply telegram, and without starting the 
timer (cf. the default parts of the three case-statements). 

The other four pages for incoming telegrams are similar to the page in Fig. 3.4, 
but the details are of course different. The three pages for user events and time-

lnTlgs tlg::InTlgs config 

[# protocolPart = LockManagement, # telegramType = Key Request, 
tlgl = send(#fromAddr tlg. config. LockManagerStatus. KeyTransfer), 
tlg2 = send(#fromAddr tlg, config, LockManagerStatus. KeyTransferImpos) ] 

OutTlgs 

(case FLstate 
of KeyFree => 1 'timer 
I default => empty) 
@+ TransTimeOut 

OutTlgsM( 
case FLstate 
of KeyFree => [tlgl] 
I KeyUsed => [tlg2] 
I KeyTrans => [tlg2] 
I KeyTransSE => [tlg2] 
I default => []) 

Fig. 3.4. ePN page for Key Request 

FLstate 

case FLstate 
of Key Free => KeyTrans 
I default => FLstate 



3.2 ePN Model of AudiolVideo System 45 

outs are simpler. Each of the eight subpages of LockManagement contains only a 
single transition. Instead of using case statements, we could have split each 
transition into a number of transitions taking care of the different cases. One of 
the early versions of the ePN model did this. However, we found that the simi­
larities and differences between the different cases were easier to see when we 
used only one transition per page. Similar arguments lead to the use of the two 
variables tlg 1 and tlg2 to avoid repeated description of telegrams. They only be­
come necessary because Standard ML does not allow case-statements where the 
left-hand part ofa rule is a list of values. Otherwise we could have written: 

case FLstate 
of KeyFree => [send(#fromAddr tlg, ...... , KeyTransfer)] 
I KeyUsed,KeyTrans,KeyTransSE 

=> [send(#fromAddr tlg, ...... , KeyTransferImpos)] 
I default => [] 

As explained above, the B&O model contains a page for each kind of telegram. 
The page describes the actions to be performed when such a telegram is re­
ceived, covering all possible states of the system. It is interesting to notice that 
this structure is the opposite of that used for the BRI protocol presented in Chap. 
9. The ePN model of the BRI protocol has a page for each state of the system 
(or more precisely for each state of the user/network part). The page describes 
the actions to be performed when the system is in this state, covering all possible 
kinds of telegrams. 

Early in the B&O project, we compared the two structuring methods to each 
other. One of the main arguments for our choice was the fact that it was believed 
to be more likely to need new kinds of telegrams than to need new states. With 
the chosen structure a new kind of telegram can be added by introducing a single 
new page - instead of modifying a significant number of existing pages. For the 
BRI model the opposite choice was taken, because the ePN model is based on an 
SDL description which has a page for each system state. 

An obvious extension to the ePN model would be to cover other parts of the 
BeoLink protocol, e.g., selection of audio/video source. To model this we would 
introduce a new group of pages, similar to the LockManagement page and its 
eight subpages (see Fig. 3.3). The only necessary modifications of existing pages 
would be the addition of a new substitution transition to the Device page and an 
update of the User page. 

3.3 Simulation of Audio/Video System 

In the early modelling phase interactive simulations were used intensively to in­
vestigate the behaviour of the model on the token game level. Often, the B&O 
engineer and a person from the ePN group sat together, at the computer, study­
ing the detailed effects of the individual transitions. In this way the model was 
debugged, improved, and extended. 



46 3 AudiolVideo System 

After approximately three months, the CPN model was considered to be rea­
sonably correct and complete, and it was now time for more automatic simula­
tions. To provide a fast overview of the simulation results, a transition dn page 
Network was augmented with a code segment to draw message sequence charts 
like those shown in Figs. 3.2 and 3.5. The code segment is very simple, with just 
a few lines of Standard ML code, which primarily consist of function calls to the 
Message Sequence Chart library of the CPN simulator [15]. 

From this point, nearly all simulations were automatic, using the message se­
quence charts as feedback. To illustrate the ease and usefulness of this approach, 
let us consider the message sequence chart shown in Fig. 3.5. It illustrates the 
rules which ensure that a single key is created when the BeoLink system is 
started from scratch by turning the power switch on. The time unit is millisec­
onds. At time 112, Device4 requests the key by broadcasting a telegram to the 
other devices. Shortly after, the three other devices do the same. However, when 
the BeoLink system is started from scratch, no key exists, and hence none of the 
devices receive a positive answer from a lock manager, since such one does not 
yet exist. After waiting for 1500 milliseconds, Device 3 experiences a time-out 
and broadcasts a Key Lost telegram. A few milliseconds later, also Device 2 and 
Device 4 make a time-out, broadcasting their Key Lost telegrams. At time 1648, 
Device 1 notifies the other devices that it has generated a key and hence has be­
come the current lock manager. This is done by broadcasting a New Lock Man­
ager telegram. Device 1 takes this initiative, because the configuration data speci­
fies that it is the power master, i.e., the device that delivers electricity to the 
data connection of the BeoLink system. 

From the discussion above, it should be obvious that the use of message se­
quence charts provides the B&O engineer with a fast way to overview the results 
of automatic simulations by offering a customised, graphical representation of 

Device 1 Device 2 Device 3 Device 4 Time 

112 

124 

136 

KeyR uest 
512 

1612 

1624 

1636 

NewLo kManager 
1648 

Fig. 3.5. Message sequence chart from audio/video system 



3.3 Simulation of AudiolVideo System 47 

the telegrams being exchanged between the devices. The use of message sequence 
charts is very common in the protocol area. In protocol specifications they are 
often used to display typical message sequences. We use message sequence charts 
in a rather different way - to display message sequences encountered during a 
simulation of the system. 

After having made a considerable number of automatic simulations, the engi­
neer was convinced that the model behaved correctly in all normal cases. His 
next objective was to investigate whether the protocol was able to deal with a 
number of special cases. As an example, he investigated the situation in which 
two key simultaneously exist in the system. This may arise when certain tele­
grams are lost, and hence it is important that the protocol is sufficiently robust to 
handle such a situation. It indeed turned out to be. When a lock manager receives 
a New Lock Manager telegram, it immediately accepts that somebody else has a 
key and consequently destroys its own. The real-world effect of two simultane­
ously existing keys could be some noise in a set of loudspeakers during a short 
time interval, e.g., sound from the radio and the CD player at the same time. 
Also, it could be that a signal from a button on a remote control is lost. 

A BeoLink system installed with the wrong kind of cable may accidentally 
have two power masters. This case was also investigated by simulations, and it 
was found that it may lead to a live-lock. If the users of the two power master 
devices never request the key, an infinite repetition of generating a key and im­
mediately destroying it may take place in each of the two power masters. This 
property of the protocol was already known from experience with the real 
physical system. It is not that critical, because it only happens in an incorrectly 
installed system. However, to make the protocol more robust, it would be nice to 
remove the problem, and a detailed study of the simulation results showed that 
this would be quite easy. 

From our simulation runs, it can be seen that the behaviour of the protocol is 
highly dependent on the length of the time-out period. If the CPN model is 
simulated without time, i.e., with all actions instantaneous, the protocol malfunc­
tions. Several keys appear, and no proper lock management is in effect. 

Except for the last one, the observations above were as the engineer expected. 
He found it very interesting to recognise the real-world behaviour of the proto­
col in the CPN model. He believes that B&O would have got a better protocol, 
had the CPN model existed prior to the implementation of the system. Then it 
would have been possible to experiment with different solutions easily and 
cheaply. 

3.4 Occurrence Graph Analysis of AudioNideo System 

In this section we describe how occurrence graphs were used to investigate the 
CPN model of the lock management protocol. As mentioned above, the CPN 
model is timed. The global clock advances and the protocol is intended to run 
forever. Hence, the occurrence graph for the lock management model is ex-



48 3 AudioNideo System 

pected to be acyclic and infinite - usually, each new state has different time 
stamps and a different global clock value than earlier states. Hence, it is impossi­
ble to calculate all reachable states and instead we used partial occurrence 
graphs. To do this we used the branching criteria described in Sect. 1.7 of 
Vol. 2. They allow the user to specify a predicate, which is evaluated before cal­
culating the successors of a node. One possibility is to use a predicate that tells 
the occurrence graph tool to find successors only for those states that exist be­
fore a certain time, e.g., 2000. Such a predicate allows us to investigate the pos­
sible actions which may occur inside an initial time interval. As we shall see be­
low, there are several other interesting ways to use the branching criteria predi­
cate. 

In addition to using branching criteria, we also had to limit the number of 
telegrams that can be waiting at places Receive Buffer and Send Buffer in Fig. 
3.4. Otherwise, we would use a lot of computation time to investigate situations 
in which a device uses all its time to generate a large number of requests. An­
other question is how many devices to include in our occurrence graph models. 
However, here it turned out that no modifications were necessary. It was sensible 
to have four devices - the same number as we had when we were doing simula­
tions. 

First, we proved that no matter what happens during the initialisation phase, 
the system always reaches a state where a key exists. To do this we used a 
branching criteria predicate instructing the tool to find successors only for those 
states in which no key exists. For a system with four devices, this partial 
a-graph had 13 420 nodes and 41 962 arcs. To facilitate experiments with dif­
ferent numbers of active devices, the B&O engineer augmented the CPN model 
with a mechanism to tum devices on and off. For each of the cases considered, it 
was verified that the occurrence graph was acyclic, and that all terminal nodes 
had a key. This means that in a finite number of steps, we always reach a state in 
which a key exists. For four devices, the minimum time was 1 600 and the 
maximum 2000 milliseconds. Thus the analysis showed that it takes between 1.6 
and 2.0 seconds before a key is generated. These times are in accordance with 
the times known from the real world, i.e., the actual time it takes from power is 
switched on until a BeoLink system is ready. This indicates that reliable per­
formance measures are indeed derivable from the CPN model. 

The next step in our protocol verification was to try to show that there is al­
ways at most one key. To do this, we used a branching criteria predicate to con­
struct a partial occurrence graph containing all states that exist up to the first key 
transfer. We had already verified the initialisation phase, and hence we started 
from a state with a single key and a single lock manager. For a system with four 
devices, this partial a-graph had 2578 nodes and 5 335 arcs. We checked that 
there were no dead markings and that the bounds on all places were as expected. 
Unfortunately, this does not provide a total proof of the at-most-one-key prop­
erty. One could hope to be able to use our partial a-graph as the basis in a proof 
using induction over the number of key transfers. However, this is not that easy. 
After a key transfer, the system may be in many different states, which all must 



3.4 Occurrence Graph Analysis of AudioNideo System 49 

be investigated as the initial marking of a new occurrence graph. It turned out 
that there were too many such states to make the approach usable in practice. 
However, even though we did not succeed in making a full verification of the at­
most-one-key property, our confidence in its correctness was strongly increased. 

When the existing version of the lock management protocol had been investi­
gated, as described above, the B&O engineer used the ePN tools to design and 
investigate a small revision of the protocol. Approximately once a year, B&O 
releases a new series of products. However, the typical customer does not replace 
all devices at the same time. Hence, new and old devices must be able to coexist. 
A radio some years old and a brand new TV set installed by the dealer yesterday 
must be able to function together in the same BeoLink system without causing 
communication problems. Without having an executable model of the protocol, it 
is cumbersome and expensive to make revisions, since a system must be imple­
mented before an efficient compatibility test can be made. 

In the revised protocol, the concept of a power master is abandoned. Instead, 
there is now a video master and/or an audio master. The video master has the 
obligation and the right to generate a new key, immediately when it discovers 
that none exists. Also the audio master may generate a new key, but only after 
some time period has elapsed. This asymmetry between the masters is introduced 
to ensure that only one key is generated. 

The ePN model of the new protocol was created by the engineer without any 
support from the ePN group. At this stage, the engineer was fully capable of 
working with the ePN method and tools all by himself. It took only about two 
weeks (four weeks half-time) to design the new version of the protocol, and to 
create and investigate the corresponding ePN model. To model the revised pro­
tocol, the engineer modified the four pages: New LockManager, Key Lost, 
Key Wanted, and Key Time Out. Since, he wanted to experiment with a mixture 
of old and new devices, the four pages now existed in two slightly different ver­
sions, which both were part of the ePN model. By a simple modification of the 
LockManagement page, the engineer created a mechanism by which he could 
vary the mixture of new and old devices, without changing the structure of the 
ePN model. When the engineer presented the results of his efforts for the ePN 
group, the behaviour was conveyed using message sequence charts. Many simu­
lation runs had been made, investigating five configurations with different mixes 
of new/old devices and presence/absence of video/audio masters. The simulations 
confirmed that the new version of the protocol works correctly, both when all 
devices are new and when the devices are mixed. 

The revised ePN model was also verified by means of occurrence graphs, in 
a similar way as the original model had been. The engineer considered the same 
five configurations as he had simulated. The occurrence graph verification was 
done by the engineer alone, and it only took about half a day. 



50 3 AudiolVideo System 

3.5 Conclusions for AudioNideo Project 

Towards the end of the project, the B&O engineers wrote a status report for 
their managers. Here they summarised the goals and the results of the project. 
The goal was to improve B&O's methods for specification, validation, and veri­
fication of protocols. The main conclusion is that this goal was met. Being able 
to create well-defined, graphical, and executable models is recognised as a valu­
able basis for obtaining better results faster. 

The project demonstrated that the CPN method can be presented to industrial 
engineers in such a way that they are able to work independently after a reasona­
bly short amount of time. The hardest part for the B&O engineers was to cope 
with the Standard ML language. As experienced C-programmers, they were used 
to think in terms of imperative languages, and the shift to a functional language 
with recursive functions turned out to involve some difficulties. A lot of the con­
sultancy work of the CPN group consisted in assisting with Standard ML tasks. 
We believe that many of these difficulties could have been avoided, had we de­
voted two extra days in the initial CPN course to Standard ML. In future courses 
of this kind, we intend to do this. 

The project also demonstrated the usefulness of having customised, graphical 
feedback from simulation runs. The message sequence charts made the work of 
the B&O engineer more pleasant and also much more efficient. Moreover, they 
allowed him to present and discuss the simulation results with colleagues who 
were totally unfamiliar with CP-nets. 

Finally, it was demonstrated that occurrence graphs of timed CP-nets can be 
used in an industrial setting. During the investigation of a revised version of the 
lock management protocol, the engineer used this verification technique on his 
own. He investigated five different configurations, establishing strong evidence 
that devices running the new protocol can coexist with devices running the old 
version. 

B&O's participation in the described project was triggered by the fact that 
communication protocols are gaining more and more attention within the com­
pany. Today, the BeoLink concept offers access to sound and vision throughout a 
private home. In the future, B&O anticipates that many audio/video products 
will be used to disseminate more general kinds of data, e.g., via access to the In­
ternet. For this purpose a number of suitable application-level protocols must be 
developed. 



Chapter 4 

Transaction Processing and 
Interconnect Fabric 

This chapter describes a project accomplished by Ludmila Cherkasova, Vadim 
Kotov, and Tomas Rokicki, Hewlett-Packard Laboratories, Palo Alto CA, USA. 
The chapter is based upon the material presented in [12]. The project was con­
ducted in 1993. 

We present our experiences in modelling an on-line transaction processing 
system and a scalable interconnect fabric by means of eP-nets and the ePN tools. 
We show how net modelling is used both for performance evaluation of existing 
applications and for architectural exploration of proposed hardware designs. 

We have performed industrial-sized simulations of tens of thousands of trans­
actions running on databases with millions of records. On-Line Transaction 
Processing applications (OLTP) were chosen because the OLTP workloads em­
phasise update-intensive database services with up to thousands of concurrent 
transactions per second. The goal of the experiment was to develop a methodol­
ogy for the net modelling of OLTP-1ike applications - investigating the ability of 
different computer systems to meet the OLTP benchmarks requirements. 

Petri-net based tools are very useful in the initial design phases when key de­
cisions about the system structure and behaviour need to be evaluated from 
simulation studies. They provide both graphical and mathematical system model­
ling views which inherently enable both quantitative and qualitative analysis of 
the design. To demonstrate this claim, a ePN model for performance analysis of 
a particular scalable interconnect fabric is presented. 

Section 4.1 presents the basic ideas behind the OLTP system and discusses 
how an efficient simulation model can be obtained. Section 4.2 presents the ePN 
model of the OLTP system. Section 4.3 contains an introduction to the basic 
ideas behind a scalable interconnect fabric. Section 4.4 presents the ePN model 
of the interconnect fabric. Finally, Sect. 4.5 presents a number of findings and 
conclusions for the project. 



52 4 Transaction Processing and Interconnect Fabric 

4.1 Introduction to Transaction Processing 

On-Line Transaction Processing (OLTP) characterises a category of information 
systems with: 

• Multiple interactive terminal sessions. 
• Intensive 110 and storage workload. 
• Large volumes of data stored in databases. 
• Transactions, i.e., well-defined units of activity satisfying such properties as 

atomicity, consistency, durability, and serialisability. 

We used CP-nets to model an OLTP system known as the TPC-A benchmark, 
[30]. We concentrated on specification and performance evaluation. 

The TPC-A benchmark describes a hypothetical bank that has multiple 
branches with multiple tellers at each branch. The bank has many customers, 
each of whom has an account. The database represents the cash position of each 
entity (branch, teller, and account) in correspondent records and a history of re­
cent transactions run by the bank. The transaction represents the work done 
when a customer makes a deposit or withdrawal against his or her account. The 
transaction is performed by a teller at some branch. TPC-A performance is 
measured in terms of transactions per second (tps). The main performance char­
acteristics are as follows: 

• There is 1 branch, 10 tellers, and 100 000 account records per reported tps. 
• The response time must be less than 2 seconds for 90% of all transactions. 
• Transaction arrivals are determined by a truncated exponential random distri-

bution. 
• Realistic implementations should be able to run thousands of tps. 

Most of the model of the TPC-A benchmark is of the database and computer 
system on which the benchmark runs. With multiple concurrent transactions, the 
system we model generates several different types of concurrent processes in­
cluding: 

• Top-level application processes. 
• Processes in the operating system (supporting transaction processing). 
• Updating processes in the database (storing the accounts tables). 
• Processes supporting liD and communication activities (which are substantial 

in this application). 

To provide transaction integrity, access to branch, teller, and account records is 
locked, so that multiple transactions cannot access the same record simultane­
ously. The database logs store data on transactions performed in order to allow 
the system to reconstruct database contents after a crash. When the log informa­
tion has been written, the changes generated by the transaction (or a group of 
transactions) are committed, and the correspondent records are unlocked. The 
update activity is substantial for TPC-A, hence such database processes as page 
cleaners are significant. These processes "clean" the database record buffer by 
writing dirty (Le., modified) pages to disk. 



4.1 Introduction to Transaction Processing 53 

For our project, we used the CPN tools described in Chap. 6 of Vol. 1. We 
found that these tools provided all the necessary capabilities, such as: 

• Means for adequately detailed and comprehensive specification of the system 
(in different stages of the design). 

• Means for formal verification of system properties. 
• Simulation vehicles for performance evaluation. 

However, it was not a trivial task to directly combine these capabilities in a sin­
gle model for a system of this complexity. For the TPC-A system, we con­
structed a number of related CPN models, beginning with a specification model 
(preserving the basic structural features of the system) and ending with a detailed 
behavioural model (used for performance evaluation). 

The specification model describes a typical, basic schema of transaction proc­
essing to be implemented on different mUltiprocessor architectures. The model 
has two main parts representing: 

• A general, functional schema of OLTP transactions, maximally independent of 
possible implementations and with a common schema of the data access using 
typical I/O procedures. 

• The architectural features of a database and its implementation on a specific 
configuration of a computer system. 

The central point of the functional part of the model is related to the locking 
mechanisms which prevent multiple transactions from simultaneously accessing 
the same database records. Each transaction, referring to a specific account, 
locks the access to this account record, then to the teller record associated with 
this transaction, and, finally, to the corresponding branch record. When the 
transaction commits (or completes), it unlocks all three records. 

The database logs are formed and stored on a disk to allow the system to roll 
forward from any consistent state (perhaps from a recent backup or checkpoint) 
to the correct database state reflecting all committed transactions and no uncom­
mitted transactions. For efficiency, a group commit scheme is used to collect 
several transaction logs for writing to a disk. This allows the use of a smaller 
number of efficient large writes rather than numerous small disk writes. The 
number of transactions in a group commit is normally fixed, but a time-out 
mechanism prevents excessive waiting for any single transaction. 

A straightforward specification of the locking mechanism for accounts, tellers 
and branches is shown in Fig. 4.1. The variable t denotes a transaction. The 
places Accounts, Tellers, and Branches contain tokens representing the individual 
accounts, tellers, and branches, respectively. An account is locked when transi­
tion Lock Account removes the corresponding token from place Accounts. The 
function Account(t) determines the account to be used for the transaction t. 
Analogously, transitions Lock Teller and Lock Branch lock tellers and branches 
by removing tokens from places Tellers and Branches. 

When the locking has been done the transactions are executed. This is mod­
elled by the substitution transition Transaction Processing that represents all the 
lower levels of the hierarchical model. The tokens emerging from the substitu­
tion transition represent completed transactions and enable the transition Unlock 



54 4 Transaction Processing and Interconnect Fabric 

which returns the tokens that were removed from places Accounts, Tellers, and 
Branches. 

The CPN model presented in Fig. 4.1 is natural and straightforward. How­
ever, it turned out to be inadequate for our simulations - when we had hundreds 
of branches, thousands of terminals, millions of accounts, and thousands of on­
going transactions. When the arriving rate for transactions increased, the num­
ber of tokens that queued in the input places of transitions Lock Account, Lock 
Teller, and Lock Branch increased. This led to a significant degradation in the 
simulation speed. The problem was caused by the fact that the CPN simulator, at 
that time, was not designed to effectively handle CPN models in which some 
places contain thousands of tokens. Since then the algorithms and data structures 
of the CPN simulator have been totally redesigned. This means that the new CPN 
simulator is much more efficient for CPN models with large amounts of tokens. 

__ A~o~t(!L ___________ _ 

Teller(t) 
-----------

Branch(t) 

') 
I 

'\ 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

_J_ _J_ __L_ 
( Branches) (Tellers ) (Accounts ') ...... + -BRANCHES ...... ""l -TELLERS -- - t- ACCOUNTS 

I I I 
I I I 
I I I 
I I I 
I I I 

Branch(t) I Teller(t) I Account(t) I 
1 I I 

,---L-_ .... = = = = = =-' _____ JI 1 
'--.--..... -----------------....../ 

TRANS 

Fig. 4.1. ePN page for locking mechanisms 



4.1 Introduction to Transaction Processing 55 

Such models often run more than one thousand times faster with the new simu­
lator. This means that a simulation takes a few seconds instead of several hours. 

To make our simulations efficient, we modified the specification model 
- without changing the behaviour of the CP-net. If we had been able to use the 
new CPN simulator, these modifications would not have been necessary. 

By using our specific knowledge of the system we were modelling, we could 
modify the CP-nets to dramatically reduce the amount of brute-force search for 
enabled bindings. As an example, consider the locking scheme from Fig. 4.1. 
The original simulation engine selects a particular token representing a transac­
tion and then considers all possible lock tokens, looking for a match. Luckily, we 
know some things about the lock tokens that we can use to speed this up: 

• The account identifiers come from a limited integer range. 
• The actual lock tokens do not carry any additional data values. It is only the 

absence or existence of a particular lock token that matters. 
• The lock tokens do not carry time stamps, and hence they are always ready to 

be used. 
• There are a large number of lock tokens (on the order of tens of millions). 

Because of these characteristics, we can perform a simple transformation to 
speed up the simulation. Instead of using an individual token for each account 
lock, we now use a single token to represent the entire lock table. This means 
that the place Account Lock Table in Fig. 4.2 only contains a single token. 
Analogously, Teller Lock Table and Branch Lock Table only have one token each, 
representing the lock tables for tellers and branches. The guards of the three 
lock transitions check that the account, teller, and branch in question are not 
locked. Each of the three lock tables is represented as a data structure pro­
grammed directly in Standard ML and accessed via a reference variable. In this 
way the locking operations become very efficient to simulate. The code segments 
of the lock transitions update the lock tables to reflect that the records are now 
locked. The unlock operation is implemented in a similar way. Transition Un­
lock has no guard, since no check has to be performed. The code segment modi­
fies the three lock tables to reflect that the account, teller, and branch no longer 
are locked. 

Various representations of the lock table were considered, including arrays, 
bit vectors, lists, and hash tables. Since typically a very small percentage of the 
database is locked, we decided to use a hash table, listing only those records that 
were locked. Thus, the locked? database predicate was implemented with the 
lookup? hash table predicate, the lock operation with the add hash table opera­
tion, and the unlock operation with the remove hash table operation. We used an 
adaptable hash table implementation where each of these operations was very fast 
(constant time on average). 

Representing an entire lock table (which is just a set of record locks) is not as 
simple as representing a single record lock, but neither is it essentially compli­
cated. The net change to our model is the addition of a few arcs, the guard ex­
pressions, and the code segments. In addition, a small amount of Standard ML 
code was written to implement the hash tables. By making the modification we 



56 4 Transaction Processing and Interconnect Fabric 

obtained a tremendous improvement of the simulation time. If we have m data­
base records and n waiting transactions, the CPN simulator has to consider 
m * n possible bindings for a transition in Fig. 4.1 while it only has to consider 
n bindings for a transition in Fig. 4.2. Since m is typically in the millions and n 
is typically just a few, this yields a dramatic speedup. In addition, it is a general 
scheme that can be (and has been) used in many other portions of the model. The 
improved CPN simulator actually uses the idea described above. The tokens of 
Accounts, Branches, and Tellers are represented in balanced trees of a kind that 
can be effectively searched and updated. 

In addition to the hash tables described above we have also modified the 
CP-nets to handle waiting processes in a more efficient way. The CP-net in the 

e -----------------..,. 

e ----------" 

_t ...... 
/' Teller \ 
~ Lock Table ) ..... -.---E 

1 

1 

1 

1 

1 

1 
el 

1 
,.---......L-_______ ---' I 

- - - - - - - - - - _./ 

I 
1 

1 

1 

1 

1 
1 
1 

1 

1 

1 

1 
1 
1 
1 

1 

/-"- ...... 
( Account 'I 
,-LoCk Table / 

-C"'-E 

1 

1 

1 

1 

1 
1 

el 
1 

1 

I 
L---,---'-'~-----------------../ 

Fig. 4.2. More effective CPN page for locking mechanisms 



4.1 Introduction to Transaction Processing 57 

left-hand part of Fig. 4.3 has a place Trans Req which may contain a significant 
number of tokens representing transaction requests waiting at transition Process 
Request. Each token carries a time stamp indicating the earliest moment at which 
the request may be processed. This means that most of the tokens at Trans Req 
are unavailable to the transition Process Request because they have a time stamp 
which is higher than the current model time. To avoid calculation of bindings 
for these tokens, we insert an extra transition as shown in the right-hand side of 
Fig. 4.3. This moves the problem of the extra binding calculations from Process 
Request to Time Filter. However, the latter transition only has one input place 
and hence there are many fewer bindings to be considered. The new improved 
ePN simulator mentioned above represents the marking of a timed place by 
means of a priority queue, where the tokens are sorted according to the time 
stamps. This means that the new simulator only calculates bindings for those to­
kens which are available. Hence, there is no longer any need for the kind of 
transformation described in Fig. 4.3. 

Disks 

d 

==> 

Fig. 4.3. Transformation to get a more effective timed ePN model 

4.2 CPN Model of Transaction Processing 

The core of our OLTP simulation model consists of 9 pages containing the fol­
lowing: 

1) Declarations of types, variables, functions, and reference variables (approxi­
mately 1000 lines of ML code). 

2) Initialisation allowing us to run the model with different system parameters. 

3) Overall transaction processing schema (shown in Fig. 4.4). 



58 4 Transaction Processing and Interconnect Fabric 

4) Record locking and access for account, teller, and branch records (shown in 
Fig. 4.5). 

5) Disk interface that prepares the disk access requests and collects and distrib-
utes the ready data. 

6) Disk service based on HP-UX scheduling strategy (shown in Fig. 4.6). 

7) Page cleaning (shown in Fig. 4.7). 

8) Group commit and time-out, specifying a strategy for writing log informa-
tion to disk and committing transactions. 

9) Collection of results and statistics. 

In the following we describe some of these pages. We start with the overall 
transaction processing schema in Fig. 4.4. New transactions are generated by 
transition Generate Transactions. The transition Prepare Account Request calcu­
lates the parameters to be used during the account update which is performed by 
transition Get Account Data. Analogously, the transaction prepares and gets data 
for the teller and for the branch. Finally, the transaction goes through Group 
Commit and Update Statistics. Note that the substitution transitions Get Account 
Data, Get Teller Data, and Get Branch Data all refer to the same page. 

This page, called Record Lock, is shown in Fig. 4.5. It is the most complex 
page of the entire CPN model. Requests for records arrive at place PI (at the 
top). The requested record is either for an account, a teller, or a branch 
(depending on the page instance). The transition Get Record Lock checks that the 
record is not locked and then it locks the record. The Lock Table is represented 
by means of a hash table, as explained in Sect. 4.1. The guard and the code seg­
ment accesses the hash table via a reference variable. The place Lock Table is a 
global fusion place. This means that the three instances of transition Get Record 
Lock (on the three page instances corresponding to substitution transitions Get 
AccountData, Get Teller Data, and GetBranchData) have mutual exclusive access 
to the lock tables. 

When the record has been locked the request proceeds to place P2. Here there 
are several possibilities. If the record is already in memory (i.e., record already 
has been buffered) then the left-hand transition Bypass Disk Access will occur. 
Otherwise the transitions Queue Request and Reserve Page will occur. The first 
of these transitions adds the request to a FIFO-queue at place P3. Because of the 
potentially large number of tokens in this queue, we are again faced with the im­
portance of efficient modelling because a more straightforward approach may 
dramatically slow down the speed of simulation. 

Before a record is read from disk, a free memory page must be reserved for 
the data. This is done by transition Reserve Page. The marking of place Buffer 
Table indicates the number of free memory pages. If there are no available pages 
Reserve Page is disabled, because of the guard [i>O]. This implies that the re­
quests in place P3 are delayed - waiting on the page cleaning processes to free a 
memory page. Page cleaning is represented on a separate page to be presented 
below. It updates the marking of the fusion place Buffer Table. 



4.2 ePN Model of Transaction Processing 59 

When a memory page has been reserved, the request proceeds to place P4, 
which is input socket for the substitution transition Record Read. This transition 
refers to page DiskAccess which models the disk behaviour. 

When the record is found and read from the disk, the request proceeds to 
place P5. The fact that the data is now available in memory is recorded (in the 

Fig. 4.4. ePN page for Transaction Processing 



60 4 Transaction Processing and Interconnect Fabric 

(t,r) 

/ 
/ 

~ 

I~ -'C~k~a~) 
- - --LOCK_DB 

.-__ ....L._-=-[b_u,ffered(r)] / 
. / 
1/ 
/ 

/ 
\ / 
\ . / 
\1 / 
\ / 
\ / 

iFGl_U_ i 

~uffer TableT.=: :: _ 

BUFFER_DB ~ ~ I -1 

\ \ 
\ \ 
\ \ 
\ \ 
\ \\ 
\ \ (TAPPt, 

DiskReqOfRec(r)) \ \ . 
\1 

\ \ 
.\ \ 
I \ \ 

\ \ 
\ \ 

\ \ \ .---~----~ 

\ 
\ 
\ 

L--__ ,-_--L-.l @+CPUupdateO 

Fig. 4.5. ePN page for Record Lock 



4.2 ePN Model of Transaction Processing 61 

lock database) by transition Update Buffer. Then the request proceeds to place 
P6, which indicates that the data is buffered. The last stage consists in reading a 
record from the memory. This is modelled by transition Read Data From Buffer. 

The substitution transition In Line Cleaning (in the right-hand part of Fig. 
4.5) represents a page cleaning strategy where the transaction itself is responsible 
for finding and cleaning a dirty page. The transition is included to investigate the 
performance of different page cleaning strategies. 

The token in place Buffer Table carries a time stamp which is used to model 
the sharing of the CPU. All operations that require CPU time update the time 
stamp of the token in Buffer Table. This is done in the time expressions of the 
transitions by means of a number of ML functions (CPUlock, CPUbypass, etc.). 
Each ML function determines the length of the corresponding operation, i.e., the 
period of time during which the CPU is busy executing the operation. The actual 
time delays are input parameters of the model and hence they can easily be 
changed. 

Figure 4.6 shows page Disk Service, which is rather straightforward. Place 
Requests receives requests from different parts of the CPN model - it might be a 
request for a branch, teller, or account record, or a request for writing to log or 
writing a dirty page. In order to know where to return the result, each kind of 
requests carries a unique identifier (in the fourth element of the product colour 
set TICKET_REQ). 

Requests Disks ~-------... 
TlCKET_REQ 

(dr,i,id,ap) ds 

[PendingReq(ds)] 
,----'----, 

Fig. 4.6. ePN page for Disk Service 



62 4 Transaction Processing and Interconnect Fabric 

The occurrence of transition AddRequest puts the request in a Request Queue. 
Place Disks contains a token for each disk in the system. A DISK_STATE is a 
pair indicating the disk number and the current head position. How disk requests 
are organised in a queue and how they are chosen from this queue depends on 
the concrete implementation of the system. We used the HP-UX scheduling strat­
egy that orders the requests according to the disk position of the data. This 
means that a new request may be satisfied before an older request - if the data of 
the new request is closer to the disk head. To change the scheduling strategy, a 
single ML function has to be modified - without changing the structure of the 
CPN model. One of the attractive features of CP-nets is the fact that it is so easy 
to change interpretations. 

Figure 4.7 shows how Page Cleaning is performed. Place Cleaning Processes 
contains a token indicating the number of idle cleaning processes, while place 
BufferTable represents the memory to be cleaned. Transition Start Cleaning ac­
tivates a cleaning process, searches the memory, and moves an unused dirty page 
to place P8 which is input socket for the substitution transition Write Dirty. This 
transition refers to page Disk Access which again refers to page Disk Service in 
Fig. 4.6. This means that the dirty page is queued to be written to a disk, in the 
way described above. When the dirty page has been written to the disk, the 
cleaning process is finished. Transition Finish Cleaning increases the number of 
available clean pages (in place Buffer Table) and returns the cleaning process to 
idle (in place Cleaning Processes). Again, it is easy to change the interpretation, 

[NeedCleanlng(l,pc)] 

,,--------
II --
1 (i @+CPUcieanO 

pcr 
1 I 
1 I 
1 I 
1 I 
1 I 
1 I 

~ ~I 
/- ...... 

\ Buffer Table ') 

-- -I""i. -SUFFER_DB 

1 \ 

I \ 
I \ 
I \ 
1 \ 

1 \ 

1 \ 1+1 

I. '-----

P8 

(ap,dr) 

(ap,dr) 

P9 

(ap,dr) 

\,'-------

@+CPUcleanO 

------pc\ 
-- 1 

pc.;'"\ : 

\ 1 
\ 1 

\ 1 
\ 1 

\ 1 

11. ~ 
(C1:anlng pro~~ " 

"'-- _/ 
PAGE_CLEAN r.-

I I 
I I 
I 1 

I 1 

I 1 

I 1 

pc I 1 ---
--- pc+1 I 
----------' 

Fig. 4.7. ePN page for Page Cleaning 



4.2 ePN Model of Transaction Processing 63 

i.e., the details of the page cleaning, without changing the structure of the CPN 
model. It is easy to model different page cleaning strategies and to change the 
number of page cleaning processes. Hence, tuning is possible by determining the 
most appropriate parameters and strategies. 

The simulation model briefly presented in this section contains a modest 
amount of programming. However, the model is in many ways universal and 
flexible to use and modify. One of the crucial points in the successful use of 
CP-nets is to determine how to divide the information between the net structure, 
the net inscriptions and the declarations. As an example, the disk service model 
represents the basic disk features by means of net structure and net inscriptions, 
while the detailed request scheduling is captured by an ML function (i.e., by 
writing ordinary sequential code). As explained, this makes it easy to experiment 
with different scheduling strategies. 

The goal of the OLTP simulation model was to provide us with the necessary 
information to analyse the functioning of the system under different transaction 
rates and conditions - to identify bottlenecks and potential inefficiencies in the 
system design. In order to accomplish this goal, we collected detailed statistics 
showing the progress of the individual transactions. This information includes, 
for example, how long each transaction spent obtaining each record lock, how 
long it spent waiting for a disk or buffer read, how long it took to make a group 
commit, etc. We also collected history information on disk requests, including 
how long each request spent in the disk queue and how long it took for the 
physical disk to satisfy the request. All this information was written to files and 
we developed a few simple tools to analyse these history traces, to perform some 
simple statistical analysis, and to illustrate the results graphically. 

An important property of CP-nets is how easy it is to extend an existing 
model by adding additional abstraction levels. To illustrate this we show how our 
model can be extended to cope with a multiprocessor architecture. To do this we 
modify the basic transaction scheme in Fig. 4.4 so that the three topmost substi­
tution transitions now refer to a new page, called Net Access (instead of refer­
ring to Record Lock). The new page is shown in Fig. 4.8. The left-hand transi­
tion is a substitution transition which refers to page Record Lock. This models 

i I nterconnect- i 

Fig. 4.8. ePN page for Net Access 



64 4 Transaction Processing and Interconnect Fabric 

requests that can be satisfied locally. The remaining three transitions model re­
quests that have to be handled by another computer. The upper transition trans­
mits the request. The right-hand transition performs the request by means of 
page Record Lock. Finally, the lower transition transmits the result back to the 
original site. The upper and lower transitions are substitution transitions. This 
allows us to model the detailed behaviour of the interconnection network. If this 
level of detail is not desired, the two substitution transitions can be replaced by 
ordinary transitions with an appropriate time delay. 

Making a detailed model of the interconnect network allows us to identify its 
properties and potential bottlenecks under the specific OL TP workload. We can 
also experiment with it and change its parameters to improve the performance. 
In addition to the modification described above, we also have to modify the page 
for Group Commits, because the group commit protocol is different for a multi­
processor systems. 

4.3 Introduction to Interconnect Fabric 

The second part of the chapter presents a CPN model for performance analysis 
of a scalable multiprocessor interconnect fabric. The CPN model of the inter­
connect can be directly integrated into the CPN model of the OL TP system. This 
is done by letting the transitions TransmitRequest and TransmitReply in Fig. 4.8 
be substitution transitions referring to the most abstract page of the Interconnect 
model. However, we did not do this. Instead we made an independent, detailed 
analysis of a stand-alone CPN model of the interconnect fabric. The results from 
this study was then used to specify appropriate time delays for transitions 
TransmitRequest and TransmitReply (which were ordinary transitions instead of 
substitution transitions). In this way we obtained a good approximation of the 
performance of the interconnect - without including too much overhead in the 
simulation model of the OLTP system. 

The fundamental component of fabric is an adaptive routing interconnect, 
called R2, based on the interconnection scheme used in the Mayfly multiproces­
sor [20], CP-nets were used to study both behavioural and performance aspects 
of the proposed R2 design. The R2 interconnect topology is a continuous hex­
agonal mesh which permits each node in the fabric to communicate with its six 
immediate neighbours. The hexagonal mesh inherently has three axes of inter­
connect and the topology permits the construction of similarly hexagonal sur­
faces. Off-surface connections are wrapped to the opposite side of the surface to 
create the desired continuous mesh property. Figure 4.9 illustrates a sample sur­
face containing 19 nodes (where only one axis is wrapped for clarity). The to­
pology permits arbitrary surface sizes to be constructed and also permits an ar­
bitrary number of surfaces to be connected by the off-surface switch. The pres­
ent discussion will be restricted to single surface properties. 

Messages are split into packets of fixed length. For this study the packet size 
is 36 words. A four-word header contains the source and destination addresses, 
leaving 32 words for the payload. Each node in the fabric contains a single R2 



4.3 Introduction to Interconnect Fabric 65 

adaptive routing device [26], whose design is the subject of our study. Each node 
in the surface is assigned a unique location which is used to calculate the appro­
priate route through the fabric. We are interested in router designs which scale 
to large node numbers. Hence, we do not use a global route table. Instead each 
node chooses one of its neighbours as the next node to be visited. The choice is 
made by a simple algorithm described in [21]. 

In order to restrict the scope of this discussion, certain R2 design aspects will 
be fixed as follows. Each node will have a FIFO queue containing twenty packet­
sized buffers. Moreover, the node has an adaptive router controller capable of 
calculating the appropriate exit ports. There are fourteen different ports. Twelve 
external ports support bi-directional traffic on the six possible paths to adjacent 
nodes in the interconnect topology. The other two internal ports permit bi­
directional traffic to the local CPU. There are also two crossbar switches. One 
connects the internal ports to the buffer pool and the other connects the buffer 
pool to the external ports. The head and tail of each FIFO buffer can be active 
concurrently, as can communication on all fourteen ports. 

Adaptive routing is inherently non-deterministic. When the header of a packet 
reaches an intermediate node, the choice of the next node depends on the appro­
priateness of the route and on local congestion properties. The R2 design distin­
guishes three possible route continuations: 

• Best Path sends the packet to a node which is closer to the destination (there 
are often two such choices). 

• No Farther sends the packet to a node without increasing the distance to the 
destination (again there are often two such choices). The intent of this option is 
to bypass intervening congestion in order to reduce the latency of the packet. 

• Random sends the packet to any adjacent node except the one it came from. In 
severe congestion situations this choice permits the packet to back away and 
circumvent the congestion. 

The output router starts with the natural attempt to send the packet via a Best 
Path. Two conditions need to be met in order to send a packet via port x to a 

3-way Switch 

Off-Surface Connection 
Processing Element 

Fig. 4.9. Topology of the interconnect fabric 



66 4 Transaction Processing and Interconnect Fabric 

node y: port x must be free and a buffer must be available in node y. The control 
protocol on R2's external port interfaces combines these two conditions into a 
single port-grant signal. If the port is granted then the packet is sent. If the port 
is not granted, due either to being busy or to failure, a stagnation counter is in­
cremented. The stagnation count is an ageing mechanism that can be used to pri­
oritise packet delivery with the goal of reducing the average and worst case 
packet latency. The router continues to try for a Best Path route until the stagna­
tion count exceeds a threshold parameter Stag}, in which case No Farther routes 
also can be used. When the stagnation count exceeds a second threshold Stag2, it 
also becomes possible to use Random routes. Under any option, if a Best Path 
port is available it will be taken before any other available but suboptimal candi­
date. 

The R2 design also supports virtual cut-through. This means that the next 
route decision can be made as soon as the destination address has been received 
in a buffer. The decoupled input and output of the R2 FIFOs permit the head of 
the packet to be forwarded concurrently with reception of the packet tail. Once 
the packet leaves a buffer and correct receipt has been signalled by the receiving 
node, the buffer and port become free for subsequent transactions. 

The performance analysis of the R2 design is based on the following imple­
mentation estimates: 

• External ports have a bandwidth of 200 MB per second. Since each packet is 
144 bytes long, 720 ns are required to transfer the entire packet. 

• To receive a packet header and to compute the routing procedure takes 120 ns. 
• The output router tries to route the packet every 50 ns. 
• Stagnation counts are: Stagl = 50, Stag2 = 100. 

The interconnect performance study presented here uses these parameters, but in 
the larger context design decisions such as these are tuned using the methodology 
presented in the next section. 

4.4 CPN Model of Interconnect Fabric 

The ePN model described in this section represents a typical, basic packet trans­
fer schema operating according to the R2 routing strategy. The model consists of 
7 pages: 

1) Declarations of types, variables, functions, and reference variables (approxi­
mately 1500 lines of ML code). 

2) Initialisation allowing us to run the model with different system parameters. 

3) Packet generator used to feed the interconnect with packets under different 
sending frequency distributions (shown in Fig. 4.10). 

4) Input PE port describing packet movement through the input PE port, in­
cluding port locking, transfer to a node buffer, routing, and port unlocking 
(shown in Fig. 4.11). 

5) Output router (shown in Fig. 4.12). 



4.4 ePN Model of Interconnect Fabric 67 

6) Node to node packet movement inside the interconnect (shown in Fig. 4.13). 

7) Destination node completing the packet transfer to the destination CPU 
(shown in Fig. 4.14). 

Tokens represent packets, requests for resources, control variables for locks 
over shared resources, etc. As an example, a token of type PACKET is a record 
with five fields: packet identifier, local node address, destination address, port 
identifier on which the packet was received, and a list of ports and node numbers 
through which the packet was transferred. Tokens of colour e carry no informa­
tion. They are used for control purposes. 

Figure 4.l0 shows the Packet Generator page. Locks are modelled in a similar 
way as in the OLTP model. The fusion place Lock Table contains a single token 
representing a table of all port locks in the interconnect. The fusion guarantees 
mutually exclusive access to the lock table. Analogously, the fusion place Buffer 
Table contains a single token representing a table of available buffers. The guard 
of transition Generate Packet implies that new packets are only generated when 
an input PE port and a buffer are available. Each time the transition occurs a 
new packet appears at place PI. The colour of the new token is determined by 
the code segment. It is of type REQ_PORT which is a pair of a PACKET and a 
PORT. The time intervals between generation of subsequent packets are regulated 
by the time expression in the arc returning an e-token to place Next. The ML 
function interarriveO implements an exponentially distributed inter-arrival time 
with a per-node average defined by an initialisation parameter. 

The place PI is an input socket of the substitution transition Input PE Port 
which refers to the page shown in Fig. 4.11. Transition Lock Input PE Port 
checks and locks the corresponding input PE port, and computes a list of the 
packet's best paths. The variable lpr on the output arc is determined by the code 
segment as the value of the expression (p,bestports(p)). The first component is 
of type PACKET, while the second is of type PORT list. Next, transition Add 
Packet to Buffer may occur. It updates the Buffer Table by adding the packet with 
the list of Best paths. Finally, transition Unlock Input P E Port removes the port 
lock. 

iFGI 1 __ _ 

"...---.. e 
'- Lock Table )+ - -

----_.-"" 
LOCK_PORT 

[PEPortAvail(). 
BufferAvaiiOl 

pr 

Fig. 4.10. ePN page for Packet Generator 



68 4 Transaction Processing and Interconnect Fabric 

The ML functions for the time delays, pe_dell () and pe_deI2(), use a boolean 
variable VCAllowed to implement two different strategies: Virtual Cut-Through 
and Store-and-Forward. If VCAllowed is true, pe_dell () and pe_deI2() return the 
values 120 ns and 600 ns, respectively. This reflects a scenario where the packet 
can proceed as soon as the header has been received. If VCAllowed is false, 
pe_dell() and pe_deI2() return 720 ns and 0 ns, respectively. This reflects a sce­
nario where the packet cannot proceed until the entire packet is in the buffer. 

The Output Router is shown in Fig. 4.12. Every 50 ns the output router 
searches the BufferTable to route the packets which are stored in it. The period 
is determined by the time expression ms_del(). Whenever an attempt to send a 
packet fails, the stagnation count assigned to the corresponding buffer increases 
by one. When an attempt succeeds, transition Check Pack & Port deposits two 
identical tokens representing the packet into places P5 and P6. Several packets 
may be routed concurrently, if port and buffer conflicts do not appear. In this 
case, multiple tokens are put in P5 and P6. The tokens in P5 and P6 have differ­
ent time delays. The token in P5 gets a delay which is 120 ns for 
VCAl/owed = true and 720 ns for VCAl/owed = false. The token in P6 gets a 
delay which specifies the time required to transfer the entire packet, i.e., 720 ns. 
Only then is it possible to Free Buffer. 

(pk,pt) 

r-------------------~ 
1 input (pk,pt); 1 
1 outl?ut lpr; 1 

act10n 1 
1 let val p = lock-pe-port(pk,pt) 1 
1 in 1 
1 (p,best-ports(p» 1 
1 __ ~n.9; ________________ J 

[Iii] 
P2 

[pe_noUocked(pk,pt)] 
,.::---'---"--...L-_~-;;-, 

-----------, 

~ 
~_+~;e~a~) 

- - -- BUFFER_DB 

1 input (pk, lpt); 
I action 
1 __ ~d~-!'.a~kJp~'2-!!.tt.J SJ i... ..! 

el 
I 
I 
I 
I 
I 

t.~ 
CL:ckTa;; ) 
- f -- LOCK]ORT 

I 
I 
I 
I 
I 

----------_-.!) 

r-------------input pki I 
1 action 1 

~ _ 3'.:.1~c5--!?0.::tJp~)~ U ~ _I 

Fig. 4.11. CPN page for Input PE Port 



4.4 ePN Model of Interconnect Fabric 69 

The subpages for substitution transitions Node to Node and Destination Node 
are shown in Figs. 4.13 and 4.14. The second of these handles packets which 
reach their final destination node, while the first handles all other packets. The 
fusion place Statistics in Fig. 4.14 collects the packets which have completed 
their journey. The trace and time information of the packets are used for per­
formance analysis. 

The CPN model described above provides a detailed specification of the in­
terconnect. To obtain efficient simulations the CPN model was tuned in a num­
ber of ways, which were similar to the transformations made to obtain an effi­
cient simulation model of the OLTP system (see Sect. 4.1). The resulting simu­
lation model is at least five times faster than the specification model and its exe­
cution speed is almost independent of the workload rates. 

The simulation model presented in this section required a modest amount of 
programming. However, the simulation model is flexible and easy to modify. 
The basic features of the interconnect are modelled within the net structure and 
the net inscriptions, while the routing strategies are specified by means of ML 
functions. This implies that the same net model can be used to study both the 
Virtual Cut-Through and the Store-and-Forward strategies. 

The goal of the interconnect simulation model was to develop a convenient 
and flexible model that is easy to modify in order to explore the potential R2 de­
sign space. All vital information was written to files, and we developed a few 
simple tools to analyse these history traces, perform some simple statistical 
analysis, and illustrate the results graphically. 

r---------
1 output i; 1 
I action I ----------, 
~ _ !0~--P3::.k~(.!..;_1 ...... ~----,~-,.-_--.j,,-.. 

/' " "e @+ ms_delO 

/' """ 

e l 
I 
I 
I 
I 
I 

IFGi ;... /' e "" ;FG' 
~--",' -k" ,,:::._,_=1-.. 

(LOCk Table) reaLpacks(i) reaLpacks(i) C Router ) 
LOc"/CP-;;'T @+deI10 @+deI10+deI20 

DestinationNode ! 

P6 

(pk,s) 

Free Buffer 
Ie 

i,,-ti] i 
(s~er Ta-;e) 

BUFFER_DB - f --
I 
I 
I 

---~) 
-------------, 
I input pk; 
laction I 
1 __ u.:'l.::c:!'--::!:,,=~(~k!...;.!.).:.. _ I 

Fig. 4.12. ePN page for Output Router 



70 4 Transaction Processing and Interconnect Fabric 

~ 

(s;e~a-;;e~ ~ -----

~ 

(~k-:;:-a;;;)+- .!!.. -----LOCK]ORT 

~ P7 

(pk,s) 

[not(terminal(pk»)] 
r------'<---------, 

Add Pack to Next 
Node Buffer 

pk @+deI20 

iim,;;-t -pk; - - - - - - - ~ 

laction 
1 add-pack(pk, 1 
1 __ b.=s ~-:!'c::t::' !P~ l.. (2..; _ J 

-------------, 
1 input pk; 1 
1 action 1 
1 __ ~n.!o~k-=".9IJ: iPlsJ L(L; _ J 

Fig. 4.13. CPN page for Node to Node packets 

[FGl 

(~k-:;:-a;;; ~ ~-----LOCK_PORT 

LIIiJ P9 
BUFFER_STATE 

(pk,s) 

[terminal(pk)] 

Transfer to 
Output PE Port 

P10 
PACKET 

pk 

Unlock Output 
PEPor! 

pk 
-------------, 
linp~t pk; 1 
lactlon I 
1 __ ~:?:..k-=P~r~(!:k2.;~)l. _ J 

Fig. 4.14. CPN page for Destination Node packets 



4.5 Conclusions for Transactions and Interconnect Project 71 

4.5 Conclusions for Transactions and Interconnect Project 

Each of the two projects was accomplished by a team of three persons. Building 
a CPN model and debugging it took about two months (in both projects). Much 
time was spent to create appropriate data structures to speed up the simulation 
(taking into account the industrial size of the modelled systems). We also used 
significant time to debug the models. This time could be reduced through im­
proved ML debugging facilities. All three participants had a good prior knowl­
edge of Petri nets. 

Modelling tools and environments based on Petri nets are very useful at the 
initial stages of a design process when the most important key hypotheses and de­
cisions about system structure and functioning should be made and checked by 
rapid prototyping. Net models provide both graphical and mathematical views of 
system models. As a graphical tool, Petri nets are similar to flowcharts and dia­
grams (augmented by the token animation representing dynamic activities) and 
are, thus, familiar to many system practitioners. On the other hand, Petri nets 
can be used in a variety of analytical forms that can be manipulated in a precise, 
mathematical way. 

We have presented our experiences in modelling an on-line transaction proc­
essing system and a scalable interconnect fabric using CP-nets and the CPN tools. 
We have performed industrial-sized simulations of tens of thousands of transac­
tions running on databases with millions of records. Our success in this model­
ling task shows that Petri nets and currently available Petri-net tools provide a 
viable modelling environment for the performance analysis of large systems. 
However, the use of nets in the modelling was not straightforward. CP-nets were 
combined with ML code (when it did not harm the model clarity and preserved 
the basic net modelling paradigm) to improve upon a more direct but time­
consuming imitation of system activities. The design of some components of the 
net model evolved from a specification model to a more efficient simulation 
model. This strategy has allowed us to understand the real power and limits of 
net modelling. 

CP-nets and the CPN tools have proven to constitute a useful and effective 
platform for the analysis of complex concurrent system designs. The R2 inter­
connection scheme was presented as a case study example of the method. CPN 
models permit a wide variety of system detail to be analysed and incrementally 
extended. The use of Standard ML to specify net inscriptions (such as arc expres­
sions, guards, colour sets, and initial markings) makes the model modular and 
easy to modify. It is easy to test different scenarios, e.g., to increase the number 
of active processes and the number of transactions to be performed. The CPN 
simulator permits detailed performance studies to be conducted. Care must be 
taken to divide the CPN model into submodels with well-defined interfaces. 
Further care must be taken in the choice of using net structure and net inscrip­
tions versus ML functions. Net structure and net inscriptions are typically better 
for specification purposes since they are more intuitive and more clearly repre­
sent the structure of the concurrent system. However, ML code is in some cases 
more efficient as the basis for a simulation model. Both are important. 



72 4 Transaction Processing and Interconnect Fabric 

In general, our experience using CP-nets and the CPN tools showed that the 
tools may serve as a basis for further development of sophisticated environments 
adequate for the modelling of complex concurrent/distributed systems. Such an 
environment should include some set of methodology guidelines as well as a li­
brary of utilities, supporting statistical analysis of traces, model debugging, ani­
mation, etc. 



Chapter 5 

Mutual Exclusion Algorithm 

This chapter describes a project accomplished by lens B. l¢rgensen and Lars M. 
Kristensen, Aarhus University, Denmark. The chapter is based upon the material 
presented in [34]. The project was conducted in 1996. 

We describe how occurrence graphs of eP-nets were used to verify the cor­
rectness of a mutual exclusion algorithm designed by Lamport. It is proved that 
the algorithm has all the properties to be expected from a mutual exclusion algo­
rithm, e.g., that there are no deadlocks and that at any time no more than one 
process is in the critical section. The construction and analysis of occurrence 
graphs are done by the ePN tools totally automatically. This means that occur­
rence graphs are easy to use, requiring very limited human work. Hence, this 
kind of verification is cheap and reliable. 

It is also demonstrated how permutations of colour set values can be used to 
obtain a significant reduction of the size of the occurrence graph without losing 
analytic power. By exploiting the inherent symmetries of the system two 
equivalence relations are defined - one for markings and one for binding ele­
ments. The basic idea is to obtain a condensed occurrence graph, called an 
OS-graph, by lumping together symmetric markings and symmetric binding 
elements. Each node in the OS-graph represents an equivalence class of reachable 
markings (which can be mapped into each other by means of permutations). 
Analogously, each arc represents an equivalence class of binding elements. 

Lamport's algorithm has also been studied by means of Petri nets in [4]. 
There the verification was done by means of place invariants while stochastic 
Petri nets were used to investigate its performance. 

Section 5.1 contains an introduction to Lamport's mutual exclusion algorithm. 
Section 5.2 presents the ePN model of the mutual exclusion algorithm. Section 
5.3 discusses how the ePN model was verified by means of occurrence graphs 
and occurrence graphs with permutation symmetries. Finally, Sect. 5.4 presents 
a number of findings and conclusions for the project. 



74 5 Mutual Exclusion Algorithm 

5.1 Introduction to Mutual Exclusion Algorithm 

Lamport's algorithm for mutual exclusion is specified in [36]. It is designed for a 
shared-memory multiprocessor architecture. Each of the N processes has a 
unique identifier in the interval 1..N. Figure 5.1 shows the code executed by 
process i when the process is about to enter the critical section (lines 1-19) and 
leave it (lines 23-24). 

The algorithm uses three global variables: x and y, which are integers, and an 
array b[ 1..N] of booleans. The await-statements in lines 6, 13, and 16 represent a 
busy wait and can be seen as a shorthand for "while -, cond do skip". Angle 
brackets < ... > are used to enclose atomic statements (i.e., reads/writes of x, y, 
and elements of b). A much more detailed explanation of the algorithm can be 
found in [36]. Here, we only show that the algorithm works by proving that it 
possesses a number of properties which mutual exclusion algorithms are ex­
pected to have, e.g., that there are no deadlocks and that at any time no more 
than one process is in the critical section. 

1 start: 
2 <b[i]:= true>; 
3 < x:= i >; 
4 if < Y "# 0 > then 
5 < b[i] := false >; 
6 await < y = 0 >; 
7 goto start; 
8 fi; 
9 < y:= i >; 

10 if < x "# i > then 
11 < b[i] := false >; 
12 for j := 1 to N 
13 do await < -, b[j] > od; 
14 
15 if < Y "# i > then 
16 await < y = 0 >; 
17 goto start; 
18 fi; 
19 fi; 
20 
21 critical section; 
22 
23 < y:= 0 >; 
24 < b[i] := false >; 

Fig. 5.1. Lamport's algorithm for mutual exclusion of shared-memory 
multiprocessors (taken from [36]) 



5.2 ePN Model of Mutual Exclusion Algorithm 75 

5.2 CPN Model of Mutual Exclusion Algorithm 

In this chapter we show how Lamport's algorithm can be modelled by means of 
CP-nets. This is actually quite straightforward. 

The control flow of the N processes is represented by a state machine, i.e., a 
sub net where each occurring binding element removes exactly one token and 
adds exactly one token (cf. Def. 4.5 (iv) in Vol. I). Each place in the state ma­
chine has a colour set which contains all the possible process identifiers: 

PID = {1,2, ...... ,N}. 

Each of the three global variables is represented by its own place. The simple 
variables x and y can take the values O .. N. Hence they are represented by two 
places x and y with the colour set 

PIDO = {O,1,2, ...... ,N}. 

Initially the values of x and yare set to zero. At any time each of these places has 
exactly one token, denoting the present value of the variable. The boolean array 
b is represented by a place with the colour set 

PIDxBOOL. 

At any time this place contains exactly N tokens with colours: 

(l,b l ), (2,b2), ... , (i,bi), ... , (N,bN), 

y o 
III 
" PIOO 

PIDxfalse 

",111"'1 ,_~(i.:::bi~) --I>Ir:-::':-;-:-' 
II b I 1""",,1 ~-;:(i .:-fa:-Is~e ):-II!:!!.!":'::"::.J 

PlDxBOOL 

Fig. 5.2. ePN representation of the statements in lines 4-8 



76 5 Mutual Exclusion Algorithm 

where bi is the present value of the i-th array element. Initially all array ele­
ments are set to false. 

Next, we discuss how the different statements can be modelled. To illustrate 
this, we consider the statements in lines 4-8. They are represented by the subnet 
in Fig. 5.2. When a token is present at place L4 the corresponding process is 
ready to start the execution of the statement in line 4 of the algorithm. If y = 0, 
the upper right transition occurs, and since the else-part of the if-statement is 
missing, we immediately reach line 9. If y 1= 0, the upper left transition occurs, 
followed by the two transitions below. They model the assignment-statement and 
the await-statement, respectively. Finally we reach line 1, due to the goto­
statement. We could have modelled the goto-statement by a separate transition, 
but we have chosen not to do this, to keep the occurrence graph as small as pos­
sible. 

As a second example, let us consider the statements in lines 12-13. They are 
represented by the subnet in Fig. 5.3. Transitionforbegin prepares the execution 
of the for-statement. It adds N tokens: 

PIDx{i} = (U,i) IjEPID} 

to place ready. Each of these tokens represents an execution of the body of the 
for-loop. The first element in the colour denotes the value of the loop variable j, 
while the second element denotes the executing process i. It is necessary to in­
clude the second element to prevent the tokens being mixed up with tokens from 
other processes simultaneously executing the for-statement. Transition await not 
b{j} represents the statement in the for-loop. It is executed N times, one for each 
value of the loop variable j. Finally, the transition for end finishes the execution 
of the for-statement. It occurs when all j values have been processed by the for­
loop (i.e., when all the tokens at ready have been moved to done). 

Note that we have modelled the for-statement in a very general way, where 
the N different values for the loop variable j are processed in an arbitrary order. 
This generalisation may seem strange - in particular because it significantly in­
creases the number of reachable states. However, the generalisation is necessary, 

PIDxi 

PIDxfalse 
G,/alse) 1"""" J40----t.~aw~a~it~no::t ~b(j!U·ll<I-~--.:....-I>I11 bill 

" h,""" PIDxBOOL 

PIDx i 

Fig. 5.3. ePN representation of the statements in lines 12-13 



5.2 ePN Model of Mutual Exclusion Algorithm 77 

because we want to use permutation symmetries to reduce the occurrence graph. 
If the values of j are processed in a particular order, the system treats the proc­
esses in a non-symmetric way and this means that the CPN model does not fulfil 
the consistency properties which are necessary for using OS-graphs (see Def. 
3.16 of Vol. 2). 

In Figs. 5.2 and 5.3 we have shown how to represent some of the statements 
in Lamport's algorithm. The remaining statements can be represented in a simi­
lar way and this yields the CPN model in Fig. 5.4. Place L21 represents the 
critical section. To improve readability we have highlighted the control structure 
of the algorithm by drawing the state machine part of the CP-net with thicker 
lines. In this part we have omitted the arc expressions (which all are i) and the 

1'''''1 PIDxfalse 

II b II 
I"" PfDxBOOL 

(i,bi) 

(i,false) 

(i,bi) 

(i,true) 

(i,bi) 

(i,false) 

Fig. 5.4. ePN model of Lamport's algorithm 

12 
r-",,"":,-,.,\-Y'--.!I'y"11 
....... "'r'--->---;;-1;>'1111II11 



78 5 Mutual Exclusion Algorithm 

colour sets (which all are PID). The places representing the variables y and b 
have been drawn several times (using two fusion sets). 

The declarations for the CPN model are shown in Fig. 5.5. Note that we de­
fine the colour set PID to be a subset of the colour set PIDO, specifying that PID 
contains all non-zero elements of PIDO. In this way we guarantee that the sym­
metries permute the elements of PID in the same way as the elements of PIDO. 

1 val N = 3; (* number of processes *) 
2 fun nonzero i = (i<>O); 
3 color BOOL = bool; 
4 color PIDO = int with O .. N declare ms; 
5 color PID = subset PIDO by nonzero declare ms; 
6 color PIDxPID = product PID * PID declare mult; 
7 color PIDxBOOL = product PID * BOOL declare mult; 
8 var i,j: PID; 
9 var x,y : PIDO; 

10 var bi: BOOL; 
11 val PIDxFALSE = mult'PIDxBOOL(PID,1'false); 
12 fun PIDx i = mult'PIDxPID(PID,I'i); 

Fig. 5.5. Declarations for the ePN model of Lamport's algorithm 

5.3 Occurrence Graph Analysis of Mutual Exclusion Algorithm 

To verify the correctness of Lamport's algorithm we consider the following 
properties: 

• No deadlocks. No execution can lead to a situation in which all processes are 
blocked. To prove this property, we show that the CPN model has no dead 
markings. 

• Mutual exclusion. At any time no more than one process is in the critical 
section. To prove this property, we show that place L21 has 1 as upper integer 
bound. 

• Possible to enter. When several processes attempt to enter the critical sec­
tion, eventually one will do so. To prove this property, we show that transition 
y:= 0 (immediately below L21) is impartial. This implies that the critical sec­
tion is left an infinite number of times (in each infinite occurrence sequence) 
and hence it is also entered an infinite number of times. 

• Possible to return. In any execution it is always possible to return to a 
marking in which all processes are positioned at start, all entries in the b-array 
are false, and y is O. To prove this property, we show that the markings de­
scribed above constitute a home space. 



5.3 Occurrence Graph Analysis of Mutual Exclusion Algorithm 79 

o No dead code. Each statement always has the possibility of being executed 
- by some process sometime in the future. To prove this property, we show 
that each transition is live. 

o Independence. No process is ever forced to start the entering of the critical 
section in order to prevent a deadlock. To prove this property, we show that 
when a marking has transition b[i]:= true (immediately below Ll) as the only 
enabled transition, then aU processes are in Li. 

To investigate the six properties, we constructed occurrence graphs for N = 2 
and N = 3. The first O-graph had less than 400 nodes while the latter had nearly 
20 000 nodes. For these two O-graphs it was straightforward to verify the first 
five properties. This was done by using a set of standard queries that implement 
the O-graph proof rules from Sect. 1.4 of Vol. 2. The queries can be used with­
out knowing the details of the proof rules (or the proof of their correctness). 
The user simply invokes the appropriate query function and gets back a result. 
As an example, the mutual exclusion property is verified by invoking a function 
Upper Integer with place L21 as argument, obtaining the result 1. For the inde­
pendence property we used a search function to locate those nodes for which all 
outgoing arcs represent transition b[i]:= true. For these nodes the search function 
checks that all processes are in Ll. For more details about search functions, see 
the description of Search Nodes in Sect. 1.7 of Vol. 2. The verification of the six 
properties is done in a few minutes. Sometimes it takes more time to write down 
the name and the arguments of the query function than to execute it. 

Having finished the investigation of the O-graphs for N = 2 and N = 3, we 
wanted to consider larger values of N. Unfortunately, this was not possible - at 
least not by using full occurrence graphs. The O-graph for N = 4 is so large 
that it could not be handled by the machine and tool support we were using. 

Hence, we turned to occurrence graphs with symmetries, OS-graphs, defined 
in Chap. 3 of Vol. 2. The basic idea behind the use of OS-graphs is the observa­
tion that Lamport's algorithm treats all processes in the same way. Below we 
show two markings M\ and M2 that are nearly identical. The only difference is 
that in M[ it is process 1 which has executed the assignment b[ij:=true, while in 
M2 it is process 2: 

M[(Ll) =]'2+1'3 M2(Ll) =1'1+1'3 

M[(L3) = 1'1 M2(L3) = 1 '2 

M[(b) = 1'(l,true)+ M2(b) = l' ( !,fal se ) + 
l' (2,false) + I '(2,true) + 
1 '(3,false) 1 '(3,false) 

M[(x) = 1 '0 M2(X) = 1 '0 

Mj(y) = 1 '0 M2(y) = 1'0. 

It is easy to see that M\ can be mapped into M2 by means of the permutation 
(l 2) which maps 1 into 2, 2 into 1, and 3 into 3. Intuitively, the two markings 
are equivalent/symmetrical. If we know what can happen from one of them, we 



80 5 Mutual Exclusion Algorithm 

also know what can happen from the other. As an example, each of the two 
markings has exactly three enabled binding elements: 

For Ml we have: 

(x:=i,<i= l,x=O» 

(b[i]:= true, <i=2, bi=false» 

(b[i] :=true, <i = 3, bi = false » 

For M2 we have: 

(x :=i, <i=2, X= 0» 

(b[i]:= true, <i= 1, bi = false > ) 
(b[i] :=true, < i = 3, bi= false». 

The permutation (1 2) maps each of the three binding elements enabled in Ml 
into one of those enabled in M2• The two sets of binding elements lead to two sets 
of direct successors, such that permutation (1 2) maps each direct successor of 
Ml into a direct successor of M2. Hence, we have illustrated that symmetric 
markings behave in a symmetric way. They have symmetric sets of enabled 
binding elements and symmetric sets of direct successors. Using induction, this 
property can be expanded to finite and infinite occurrence sequences. 

The CPN model of Lamport's algorithm contains many markings that are 
symmetric to each other, in the sense described above. The basic idea in 
OS-graphs is to obtain a condensed occurrence graph by lumping together sym­
metric markings and symmetric binding elements. Each node in the OS-graph 
represents an equivalence class ofreachable markings (which can be mapped into 
each other by means of permutations). Analogously, each arc represents an 
equivalence class of binding elements. 

Now let us be more precise. First, we specify the exact set of symmetries that 
we allow. To do this, we make a permutation symmetry specification, as defined 
in Def. 3.11 of Vol. 2. Our model has two atomic colour sets. For PIDO we al­
low all those permutations that map 0 into itself. This indicates that all the N 
processes can be replaced by each other, while 0 is a special value. For BOOL 
we only allow the identity function, which maps false into false and true into 
true. Permutations of the structured colour sets PID, PIDxPID, and PIDxBOOL 
are derived from a permutation of PIDO in a straightforward way. As an exam­
ple, the permutation (1 2) maps (1,3) into (2,3) and maps (2,true) into (I,true). 

Next, we prove that our symmetry specification is consistent with the behav­
iour of the CPN model, i.e., that symmetric markings and binding elements 
really are treated in a symmetric way. This means that we need to prove the con­
sistency properties defined in Def. 3.16 of Vol. 2. However, this is straightfor-

Nodes Arcs 

N O-graph OS-graph Ratio O-graph OS-graph Ratio N! 

2 380 191 1.99 716 358 2.00 2 

3 19742 3367 5.86 58272 9788 5.95 6 

4 1914784 83235 23.00 9046048 383030 23.62 24 

Fig. 5.6. Size of O-graphs and OS-graphs for Lamport's algorithm 



5.3 Occurrence Graph Analysis of Mutual Exclusion Algorithm 81 

ward, since all arc expressions, guards, and initialisation expressions are very 
simple. 

Finally, we must provide the two ML functions, EquivMark and EquivBE. 
described in Sect. 2.7 of Vol. 2. The first function takes two markings and de­
cides whether they are equivalent or not. The second function does the same, but 
for two binding elements. A straightforward way to implement the two ML 
functions is to test all permutation symmetries in turn. If one of the permutation 
symmetries maps the first argument of the ML function into the second argu­
ment, true is returned; otherwise false. A more efficient way to implement the 
two ML functions is to use restrictions sets as described in Sect. 3.5 of Vol. 2. 
For this purpose a library of useful ML functions exists. 

Now we can construct the OS-graphs for N = 2, N = 3, and N = 4. They 
have the sizes shown in Fig. 5.6. As can be seen, the OS-graphs are much smaller 
than the corresponding O-graphs. N! is the number of permutations that we al­
low. This means that each equivalence class can have at most N! members, and 
hence we cannot obtain a reduction ratio larger than N! The table shows that we 
are surprisingly close to this theoretical limit. 

The size of the O-graph for N = 4 is calculated from the corresponding 
OS-graph (since the O-graph is too big to be constructed by the tool). This cal­
culation is done automatically by the OS-graph tool. The only thing that the user 
has to do is to provide a function SeljSym, which calculates the set of self­
symmetries for a given marking. The self-symmetries are those symmetries that 
map the marking into itself. For more information on self-symmetries, see Sects. 
3.4-3.5 in Vol. 2. 

In Sect. 5.2, we explained that the use of OS-graphs forces us to use a more 
general for-statement, increasing the number of reachable states. This means that 
it is interesting to compare the size of the OS-graph (with the generalised for­
statement) with the size of the O-graph (with the ordinary for-statement). For 
N = 3, the latter has II 978 nodes and 32226 arcs. This means that it is more 
than three times as big as the OS-graph. Hence, we have gained more by 
OS-graphs than we have lost due to the more general for-statement. 

The time used to calculate the different occurrence graphs are shown in Fig. 
5.7. All calculations were performed on a Sun Sparc 20 with 256 MB physical 
RAM. Note that the OS-graph for N = 3 is calculated 27 times faster than the 
corresponding O-graph, although the OS-graph is only 6 times smaller than the 
O-graph. This means that the average processing time of an OS-graph node is 

N 

2 

3 

4 

O-graph 

5 seconds 

37.7 minutes 

OS-graph 

4 seconds 

1.4 minutes 

291.2 minutes 

Ratio 

1.25 

26.89 

Fig. 5.7. Time to construct O-graphs and OS-graphs for Lamport's algorithm 



82 5 Mutual Exclusion Algorithm 

significantly smaller than the processing time of an O-graph node. At first 
glance, this is rather surprising - obviously it should be more expensive to test 
whether the markings of two nodes are equivalent than to test whether they are 
identical. However, the reason is simple. The OS-graph contains many fewer 
nodes than the O-graph, and thus a newly constructed OS-graph node has to be 
compared, on average, to many fewer nodes than a newly constructed O-graph 
node. 

When the OS-graphs had been constructed they were investigated. This was 
done in exactly the same way as for O-graphs. Again we used a set of standard 
queries - this time implementing the OS-graph proof rules from Sects. 3.2 and 
3.3 of Vol. 2. 

A later version of the OS-graph tool will include a check of the consistency 
properties, and it will automatically derive the ML functions EquivMark and 
EquivBE from the permutation symmetry specification. This will make the 
OS-graph construction fully automatic and remove the possibility of making er­
rors in the consistency proof or in the implementation of the two ML functions. 
Meanwhile, we can use the OS-graph tool to calculate the size of some of the 
small O-graphs (e.g., for N = 2 and N = 3). Then we can compare these com­
puted sizes with the sizes of the actual O-graphs (constructed by the O-graph 
tool). If the sizes match, we have a strong indication that our symmetry specifi­
cation is consistent with the ePN model and that our two ML functions are cor­
rectly implemented. 

To illustrate why the OS-graphs are smaller and faster to compute than the 
O-graphs, let us consider Figs. 5.8 and 5.9, which show the first few nodes in the 
O-graph and the OS-graph, respectively (for N = 3). The two drawings can be 

(b[i):=true, 
<i=1,bi=F» 

#2 L1:2,3 

L3: 1 
x,y = 0,0 

b = [T,F,F] 

(x:=i, 
<i=1,x=0» 

#5 L1:2,3 
L4: 1 

x,Y = 1,0 
b = [T,F,F] 

(b[i):=true, 
<i=2,bi=F> ) .. 

#6 L1: 3 
L3: 1,2 

x,y = 0,0 
b = [T,T,F] 

#7 

#1 
L1: 1,2,3 
X,Y = 0,0 

b = [F,F,F] 

#3 

L1: 1,3 #8 

L4: 2 
x,Y = 2,0 

b = [F,T,F] 

L1: 2 
L3: 1,3 

x,Y = 0,0 

(b[i):=true, 
<i=3,bi=F> ) 

#9 L1: 1,2 
L4: 3 

x,Y = 3,0 
b = [T,F,T] b = [F,F,T] 

Fig. 5.8. The first few nodes in the O-graph (for N = 3) 

(b[i]:=true, 
<i=2,bi=F» 

L 1: 1 
L3: 2,3 

x,Y = 0,0 
b = [F,T,T] 



5.3 Occurrence Graph Analysis of Mutual Exclusion Algorithm 83 

produced by means of the O-graph tool and the OS-graph tool. The layouts have 
been manually improved. 

Node #SI in the OS-graph has the same marking as node #1 in the O-graph. 
Both nodes represent the initial marking of our ePN model. Node #S2 in the 
OS-graph has the same marking as node #2 in the O-graph. However, it repre­
sents not only this marking but also the markings of nodes #3 and #4 in the 
O-graph. Analogously, node #S3 represents the markings of nodes #5, #7, and 
#9, while node #S4 represents the markings of nodes #6, #8, and #10. 

We would also like, of course, to be able to investigate Lamport's algorithm 
for N> 4. However, this is not possible, because also the OS-graph becomes too 
big to be handled by our present tool/machines. Hence, we have to simplify our 
model in some way. One possibility is to represent the for-statement in lines 12-
13 in a less expensive way with respect to state explosion. In [4] the for-statement 
is represented by a single transition which simultaneously tests the values of all N 
elements in the array b. This solution is symmetric and it significantly decreases 
the number of reachable states. However, it is not a fully correct representation 
of Lamport's algorithm, because it collapses a sequence of independent tests into 
a single action. Hence, we cannot be totally sure that correctness of the algo­
rithm, with the simple representation of the for-statement, implies correctness 
when the ordinary or general for-statement is used. However, it is still worth in­
vestigating the simplified model, because it is possible to deal with higher values 
of N. If the simplified model allows us to locate an error, then it is likely that 
this error also exists in the non-simplified model. With the simplified model we 
were able to handle N = 5 and N = 6. For the latter, the OS-graph has 83 895 
nodes and 360933 arcs. The O-graph has 34258216 nodes and 175 300026 
arcs. 

#81 

#82 

L1: 1,2,3 
x,y = 0,0 

b = [F,F,F] 

I 
(b[i]:=true, 
<i=1,bi=F» 

L1: 2,3 
L3: 1 

x,y = 0,0 
b = [T,F,F] 

(x:=i, 
<i=1,x=0» 

(b[i]:=true, 
<i=2,bi=F» , 

#83 L 1: 2,3 
L4: 1 

x,y = 1,0 
b = [T,F,F] 

). 
#84 L 1: 3 

L3: 1,2 
x,y = 0,0 

b = [T,T,F] 

Fig. 5.9. The first few nodes in the OS-graph (for N = 3) 



84 5 Mutual Exclusion Algorithm 

5.4 Conclusions for Mutual Exclusion Algorithm Project 

In this chapter we have shown that it sometimes is possible to alleviate the state 
explosion problem by exploiting symmetries inherent to the system which we 
model. By using OS-graphs we were able to verify Lamport's mutual exclusion 
algorithm for four processes, instead of the three processes that could be handled 
by a-graphs. Although this result may not seem too impressive, it is definitely a 
step in the right direction, and it indicates that symmetries are useful. If they are 
combined with other occurrence graph reduction methods, e.g., stubborn sets, 
the results may become more convincing, significantly moving the border line 
between those models that are manageable for occurrence graph analysis and 
those models that are too complex. 

The construction and analysis of OS-graphs are fully automatic. This means 
that occurrence graph analysis is cheap and reliable. For OS-graphs this only be­
comes totally true when the tool includes a check of the consistency properties 
and is able to derive EquivMark and EquivBE from the permutation symmetry 
specification. 

In [4] Lamport's algorithm is verified by means of place invariants. This has 
the advantage that the verification is independent of the number of processes, and 
hence valid for all N. However, free rides are rare. The disadvantage of the 
place invariant method is the fact that the verification becomes far less auto­
matic. The verification in [4] relies on a number of quite complex and lengthy 
mathematical arguments, which are prone to error and time-consuming. The 
same is true for the justification provided in Lamport's original paper [36]. 



Chapter 6 

ISDN Supplementary Services 

This chapter describes a project accomplished by Greg Findlow and Geoff Ger­
rand, Telstra Research Laboratories, Clayton, Victoria, Australia, with supervi­
sion and input from Jonathan Billington and Richard Fone. The chapter is based 
upon material from the internal report [23] and the paper [24]. The project was 
conducted in 1991-92. 

We describe how CP-nets and the CPN tools were used to model four differ­
ent ISDN supplementary services. The Integrated Services Digital Network 
(ISDN) is a fast telecommunications network which customers access via a set of 
64 kbps traffic channels. It supports a wide range of basic teleservices, such as 
telephony, facsimile, and data transmission. To enhance the basic services, a set 
of supplementary services may be offered. 

In our project we considered the supplementary services known as Call For­
warding, Call Completion to Busy Subscriber, Closed User Group, and Call 
Hold. The creation and validation of a CPN model for the ISDN supplementary 
services turned out to be very helpful to investigate the potential interactions 
between the services. It also helped us to identify many ambiguities, omissions, 
and other shortcomings in the service recommendations. 

The project was accomplished by two persons over a period of one year. We 
used a total of nine man-months, including initial training and writing of reports. 
The CPN model was validated by means of simulation and occurrence graph 
analysis. Due to a tight project schedule and rather limited resources, the valida­
tion did not become as thorough and detailed as desired. However, we did some 
limited amount of work and identified a number of useful techniques, which may 
be of interest to other projects. 

Section 6.1 contains an introduction to the supplementary ISDN services. We 
also describe a number of decisions and assumptions made during the modelling 
process. Section 6.2 describes the CPN model of the supplementary services. 
Section 6.3 discusses how the CPN model can be validated by means of simula­
tion and occurrence graph analysis. Finally, Sect. 6.4 presents a number of find­
ings and conclusions for the project. 



86 6 ISDN Supplementary Services 

6.1 Introduction to ISDN Supplementary Services 

Call Forwarding (CF) allows a call to be forwarded, i.e., redirected from one 
phone number to another. There are three kinds of forwarding. One of these is 
unconditional (CFU), while the other two only happen when the original destina­
tion is busy (CFB) or provides no reply (CFNR). All three kinds of forwarding 
may be active simultaneously, and they may specify different forwarding desti­
nations. 

Call Completion to Busy Subscriber (CCBS) allows a caller to tempo­
rarily postpone his call, in the case where the recipient is busy with another call. 
When the recipient becomes idle, the caller is notified via a CCBS recall. If the 
caller also is idle, the call is established as a CCBS call. Otherwise, the CCBS 
request is suspended until the caller becomes free again. It is only possible to re­
quest a CCBS for a call which has not been forwarded (or has been CFB for­
warded at its original destination and eventually met a busy recipient, where it 
was not forwarded). In both cases the CCBS is towards the original destination. 

Closed User Group (CUG) allows the users to be members of one or more 
user groups. Members of a group can communicate among themselves. Via CUG 
restrictions it may be specified that some group members cannot receive calls 
from other group members and/or make calls to these. It is also specified 
whether a user is allowed to receive calls from users outside his groups and/or 
make calls to these. When a CUG subscriber makes a CUG call, he specifies one 
of his groups (or uses a default group). To make sure that the above CUG re­
strictions are fulfilled each call must pass an outgoing CUG check (at the origi­
nating exchange) and an incoming CUG check (at the destination exchange). If 
the call is forwarded it will have to pass additional CUG checks. 

Call Hold (CH) allows a user to interrupt an existing call (and free the chan­
nel that it is using) without clearing the call. This means that the interrupted call 
subsequently may be re-established, when and if desired. 

The International Telecommunications Union (ITU) uses a three-stage meth­
odology for defining ISDN services. The first stage describes the services from a 
user's perspective. Many service interactions are visible at this level. For exam­
ple, when Alice invokes CCBS against Bob, and Bob subsequently activates CFU 
to Carol, should Alice then be offered a CCBS recall when Bob becomes free? 
The construction of a Stage I CPN model may help to identify many interactions 
between services and find ambiguities in the service descriptions. Moreover, the 
simulation and analysis of such a model may reveal a number of less obvious in­
teractions between the services. 

The second stage in the ITU methodology identifies the functional capabilities 
and information flows which the network must support to provide the services, 
while the third stage defines the detailed signalling protocols providing the capa­
bilities and flows. 

A Stage 3 CPN model may be used to verify the signalling systems, e.g., to 
check that they provide the intended functionality and information flows and 
cannot reach undesirable situations such as deadlocks. A Stage 2 or 3 CPN model 



6.1 Introduction to ISDN Supplementary Services 87 

may also help to identify service interactions which are not visible from the 
user's viewpoint. For example, when Alice accepts a CCBS recall, to set up a 
CCBS call from her to Bob, the network sends out a new call request on Alice's 
behalf. From where does the network obtain the CUG information for this new 
request? 

We decided to base our CPN modelling on the Stage 1 recommendations, al­
though we also used the Stage 2 and 3 recommendations for clarification of some 
points. The main reason for this choice was to avoid a potential state explosion. It 
was felt that (at least initially) it was better not to model the explicit messages in 
Stage 2 and 3, since they would increase the size of the occurrence graph 
(making analysis of the model more difficult), but would probably not reveal a 
lot of extra interactions. Time constraints also influenced our choice of model­
ling level. With more time, we would have attempted also to construct and ana­
lyse some Stage 2 or 3 models. 

To concentrate on the various states a call request goes through, we omitted 
details such as the geographical locations of exchanges from our model. With the 
network shown in Fig. 6.1, a call from Alice to Bob may pass through the Mel­
bourne city exchange at the same time as a call from Carol to Daniel is leaving 
that exchange. However, the fact that the calls pass through the same physical ex­
change is irrelevant, since they remain logically separated from each other. 
Hence it is sufficient to record that Carol's call request is leaving its originating 
exchange while Alice's call request is in transit (passing through an intermediate 
exchange). 

In our model a call request is represented by a token, which can be at three 
different CPN places. The first place represents the situation where the request is 
at the originating exchange, awaiting the results of an outgoing CUG check. At 
the second place the request is in transit between the originating and the termi­
nating exchanges, or it is at the terminating exchange awaiting the results of an 
incoming CUG check. At the third place the request is ready to be offered to the 
called party. As a call request "moves" forward through a network, messages are 
sent in both directions. Hence, the position of a call request is an abstract con­
cept, which (roughly speaking) corresponds to the furthest point reached by any 
message associated with the call. 

Alice 

Fig. 6.1. A possible telecommunications network 



88 6 ISDN Supplementary Services 

Although the supplementary services are defined specifically for ISDN net­
works, they could also be provided in other kinds of networks. This would 
probably not change the majority of interactions, since they are determined by 
the (possibly conflicting) results the various services aim to achieve, rather than 
by the particular characteristics of the network in which the services are pro­
vided. For this reason, we abstracted a number of the ISDN characteristics out of 
our model. Below we discuss some of these simplifications. 

A user has two traffic channels (which may each carry a single outgoing! 
incoming call) and a signalling channel (for establishing and terminating calls). 
We only modelled the traffic channels, and we did not consider primary rate 
ISDN (in which a user has 30 traffic channels). Increasing the number of chan­
nels per user is unlikely to significantly increase the possible service interactions. 
One might then ask why we modelled more than one channel per user. The an­
swer is that the existence of multiple channels is one of the main differences be­
tween ISDN and standard telephone networks. However, restricting the number 
of traffic channels to one (and avoiding any ISDN specifics) would yield a model 
which could be useful for the design and implementation of simpler networks 
- since it would be possible to reuse work and results from our project. 

We only modelled one basic kind of teleservice. Modelling different types 
(such as telephony, facsimile, and data transmission) is unlikely to contribute sig­
nificantly to the service interactions - most, if not all interactions, at the Stage I 
level, should be able to occur anyhow. 

A user can be busy because he has no free traffic channels. However, he can 
also be busy because the necessary equipment to handle a call is unavailable. This 
may happen, e.g., when two fax calls simultaneously reach a user with only one 
fax machine. Since we did not model different types of teleservices, we simply 
consider a user to be busy iff both traffic channels are in use. 

We represented each user by a token describing the details of his subscription 
(e.g., specifying the groups to which he belongs and the permissions which he 
has with respect to these groups). Alternatively, we could have made a model 
where all checks were resolved non-deterministically (yielding a pass or fail). 
This would probably have decreased the size of the occurrence graph. However, 
it might also have hidden many potential interactions arising from particular sub­
scriptions chosen by the users. For example, suppose that the cva subscriptions 
allow Alice to call Bob or Carol, but forbid Bob from calling Carol. Can Bob 
still demand that his calls are forwarded to Carol? If so, should he be charged 
for the second leg of such a call? 

The rest of this section lists a number of assumptions we made for the four 
supplementary services. Some of the assumptions are simplifications made to 
make analysis more tractable. Others were necessary because the lTV recom­
mendations were unclear or incomplete. The number of assumptions reflects the 
considerable effort involved in creating a formal model from (mainly) textual 
specifications. The list can be skipped by readers who are not interested in the 
details of telecommunication systems. X and Y refer to the users involved in a 
CCBS. X has called Y, found him busy, and hence made a CCBS request. 



6.1 Introduction to ISDN Supplementary Services 89 

• Crank-back of calls is not modelled (they allow a call that cannot be forwarded 
to be reoffered to the last destination at which a CFNR occurred). 

• All users are modelled as CCBS subscribers and a CCBS must be invoked 
whenever possible. This removes innocuous sequences of events in which 
service interactions do not occur because CCBS is not used. 

• A CCBS request includes the CUG information from the initial call request. 
This is necessary to allow the network to set up the CCBS call without re­
questing the information once more from X. The ITU version does not men­
tion this dependency between CUG and CCBS. The problem was discovered 
during our modelling. 

• Each user is only allowed to have one outstanding CCBS request made by him 
and one outstanding CCBS request towards him - at a time. 

• A CCBS request is removed from the relevant register when the correspond­
ing CCBS recall is accepted by X (which means that CCBS calls behaves in ex­
actly the same way as ordinary calls). In the ITU version a CCBS request is 
intact until the corresponding CCBS call reaches Y (which means that CCBS 
calls must be distinguishable from ordinary calls). 

• If a call request is cancelled while it is being serviced, then the CCBS recall is 
terminated in a reasonable way. The ITU specification does not cover this 
event - a deficiency in the specification discovered during our modelling. 

• When X has a suspended CCBS request and frees a channel, the request is not 
unsuspended immediately. Thus it is possible for X to make/receive another 
call- leaving the CCBS request suspended even though X has been temporarily 
free. This corresponds to a periodic monitoring of X by some kind of polling 
method. 

• A user is allowed to invoke CCBS on himself, and two users may invoke CCBS 
towards each other. 

• Timers are modelled by transitions which generate time-outs in a non­
deterministic way. This covers the service duration timer (cancelling old 
CCBS requests, e.g., after one hour), the destination idle timer (waiting ap­
proximately 10 seconds after Y becomes free until the CCBS recall notification 
is sent to X), and the CCBS recall timer (limiting the period in which X may 
accept a recall). 

• The retention timer (limiting the period in which X may invoke CCBS after 
receiving a busy signal) was not modelled, since it is incompatible with our 
compulsory CCBS strategy described above. 

• There are three CUGs. We chose this number because we felt it was small 
enough to avoid undue complexity but large enough to allow all possible inter­
actions. 

• It was assumed that every CUG subscriber belongs to at least one CUG. We 
also assumed that a caller never specifies a CUG to which he does not belong 
(violating requests can be considered as being immediately rejected). 

• Multiple networks were not modelled. This implies that only two CUG checks 
are performed for each call (unless it is forwarded). In reality, more checks 
might be performed, e.g., for calls crossing national boundaries. 



90 6 ISDN Supplementary Services 

• A user may put an unlimited number of calls on hold and the retrieval order 
may differ from the order in which the calls were held. 

• A call may only be put on hold after it has been connected, i.e., has been an­
swered. 

• A user's CH subscription is checked when he puts a call on hold, but not when 
he retrieves the call. 

6.2 CPN Model of ISDN Supplementary Services 

During the construction of the CP-net, we tried to avoid state explosion, since we 
wanted to use occurrence graph analysis. Hence we tried to model sequences of 
network events by a single transition whenever this was feasible. For example, 
when Alice invokes CCBS against Bob, a single transition checks that Bob is free 
and sends the notification to Alice. 

We used a number of places to represent the different states in the basic and 
supplementary services. As an example, we could have used a single place to rep­
resent all call requests. Instead, we used three different places, to emphasise the 
three stages which a call request passes through. 

Our CPN model is atypical - in the sense that we did not use substitution tran­
sitions. Instead the pages are glued together by means of a large number of 
global fusion sets. In the CPN pages shown below, we have hidden all fusion tags 
(places with identical names belong to the same fusion set). The absence of sub­
stitution transitions makes it a bit difficult to get an overview of the structure of 
our CPN model, and hence we have arranged the page nodes in groups (on the 
hierarchy page) according to the purpose of the corresponding pages: 

• Four pages describe the basic calling facilities (dialling, calls being answered 
or finding the destination busy, and clearing of calls). 

• Five pages describe initialisation and modification of subscriptions. 
• Six pages describe Call Forwarding. 
• Five pages describe Call Completion to Busy Subscriber. 
• Nineteen pages describe outgoing and incoming cva checks. 
• Three pages describe Call Hold. 

Most of the pages contain only one or two transitions. Below we describe the 
details of four of the pages (belonging to different groups). However, first we 
discuss the colour sets, which are shown in Fig. 6.2. 

The first group of colour sets is used to identify Users and Channels. For ex­
ample, (u(2),!) denotes the first traffic channel of user u(2). The zero value in 
ChannelNo is used by the Call Hold service to represent a call which is being 
held by a user without occupying a channel. 

The second group of colour sets deals with the three different kinds of for­
warding described in Sect. 6.1. The FWDno counts the number of times a call 
has been forwarded. 

The third group deals with all the information necessary to handle the user 
groups. GroupNo' is similar to GroupNo but contains an extra NULL element 



6.2 CPN Model of ISDN Supplementary Services 91 

which is used in cases where no group number is provided. InBar and OutBar 
specify whether the user is allowed to receive calls from other group members 
and make calls to these (fCB means that incoming calls are barred, while ICA 
means that incoming calls are allowed). InAee and OutAee specify whether the 
user is allowed to receive calls from users outside his groups and make calls to 
these. As an example, we may have the following CUG subscription: 

(u(3), [(g(l),ICB,OCA), (g(2),1CA,OCA)], E(g(2)), nolA, OAe). 

It tells us that user u(3) is member of the groups gO) and g(2). In the first group 
he cannot receive calls from other group members, but he can make calls to 
them. In the second group he can receive and make calls to other group mem­
bers. The element (E(g(2)) specifies that the second group is the default. Finally, 
the user cannot receive calls from users outside his groups (nolA), but he is al­
lowed to make calls to such users (OAe). 

OAi and OAe stand for implicit and explicit outgoing access. If a user has 
OAi in their CUG subscription, the network will always try to connect a call by 

color User = index u with 1..4; 
color UserxUser = product User * User; 
color ChannelNo = int with 0 .. 2; 
color Channel = product User * ChannelNo; 

color FWDtype = with CFU I CFNR I CFB I noFWD; 
color FWDno = int; 
color FWDinfo = product User * FWDtype * FWDno; 

color GroupNo = index g with 1..3; 
color GroupNo' = union E:GroupNo + NULL; 
color InBar = with ICB I ICA; 
color OutBar = with OCB I OCA; 
color InAcc = with IA I nolA; 
color OutAcc = with OAi I OAe I noOA; 
color CUG = product GroupNo * InBar * OutBar; 
color CUGlist = list CUG; 
color CUGsubsc = product User * CUGlist * GroupNo' * InAcc * OutAcc; 

color CUGserv = with useCUG I noCUG; 
color OAreq = with useOUT I noOUT; 
color CUGinfo = product CUGserv * GroupNo' * OAreq; 

'I color CCBStag = with ACTIVE I SUSP I SERV; 
color CCBSreq = product User * User * CUGinfo * CCBStag; 

color Request = product Channel * CUGinfo * User * FWDinfo; 
color ShortReq = product Channel * CUGinfo * User; 

I color Calls = product Channel * Channel; 
---------~------------------------~ 

Fig. 6.2. Colour set declarations for ISDN supplementary services 



92 6 ISDN Supplementary Services 

that user as a non-eUG (i.e., normal) call if it cannot be connected as a eUG call 
If a user has OAe in their eUB subscription, the networks will not do this unless 
that user specifically requests outgoing access (useOUT) in their call request. 

The fourth group of colour sets deals with the eUG information from the 
initial call request. As explained in Sect. 6.1 this information is necessary in con­
nection with the eUG checks. The first two elements of the CUGinfo specify 
whether the call should be made via eUG and if so identifies the group to be 
used. The last element specifies whether the call should be made via outgoing ac­
cess if it cannot be made via CUG. The fifth group of colour sets deals with 
CCBS, while the last group deals with Requests and Calls. A short request is a 
request without any forwarding information. 

In addition to the colour sets, we declared a number of variables, two con­
stants, and two simple ML functions. The two functions recursively search 
through a CUGlist. One of them checks whether a specified group appears in the 
list. The other checks whether the list contains repetitions (i.e., two entries for 
the same group). By convention, colours and constants are written with mostly 
uppercase letters (e.g., ICB, noCUG and MAXFWD), while variables are written 
with mostly lowercase letters (e.g., cuglist, inacc and OrigPty). Most variables 
have a name which is identical to the name of their colour set (except for their 
capitalisation). The only exceptions are variables where the name ends with Pty 
or Chan (the former are of type User while the latter are of type ChanneINo). 

Channel 

Free 

Channel 

(OrigPty,OrigChan) (OrigPty,OrigChan) 

(OrigPtY,OrigChan) 

(OrigPty,OrigChan) 
[eugserv = useCUG 
orelse 

inaee, 
outaee) 

OrigPty 

((OrigPty,OrigChan), 
(useCUG,E(groupno),oareq), 
DestPty, 
(DestPty,noFWD,O)) 

OrigPty 

User 

Request 

Fig. 6.3. ePN page for Dialling 

oareq = noOUTj 

((OrigPtY,OrigChan), 
(eugserv,NULL,oareq), 
DestPty, 
(DestPty,noFWD,O)) 



6.2 ePN Model of ISDN Supplementary Services 93 

The CPN page shown in Fig. 6.3 describes the dialling process, i.e., the crea­
tion of requests. Initially, each channel is represented by a token on place Free. 
However, as calls are made, some channels become Busy. The left-hand transi­
tion describes a call in which a CUG is specified. The guard checks that the user 
is a member of the specified group (In is an infixed version of one of the recur­
sive functions mentioned above). The right-hand transition describes a call which 
does not explicitly specify a CUG. However, it is still possible to get a CUG call 
by setting cugserv = useCUG. From the guard, we see that cugserv = noCUG 
implies oareq = noOUT. This reflects that non-CUG calls (by convention) get a 
CUGinfo which looks as follows: (noCUG,NULL,noOUT). Both transitions cre­
ate an Unchecked Request. They also add a token to Modify Subscriptions. This 
place is used to control the number of subscription changes (which would other­
wise dominate the simulations). The choice to allow one subscription modifica­
tion per call is fairly arbitrary. 

The CPN page in Fig. 6.4 describes how a Call Forward on No Reply 
(CFNR) is handled. The call to be forwarded has already undergone both outgo­
ing and incoming CUG checks. Hence, it is represented by a token on place Final 
Requests. After the forwarding, the call will have to undergo an additional in­
coming CUG check at its new destination. Hence, it will be presented by a token 
on place Intermediate Requests. To be able to Perform CFNR a number of condi­
tions must be met. They are modelled by the guard and the three double arcs. 

Request 

Final 
Requests 

I 

((OrigPty,OrigChan). 
cuginfo, 
DestPty, 
(FirstDestPty,fwdtype,fwdno)) 

I! (DestPty,FwdPty) 

DestPty 

((OrigPty,OrigChan), (DestPty,DestChan) 

cuginfo, 
FwdPty, 
(FirstDestPty, 
if fwdno = 0 then CFNR else fwdtype, 
fwdno+1)) 

Request 

Active ) 
CFNR 

UserxUser 

~ 
Inactive) 

CFU 

User 

Free 

Channel 

Fig. 6.4. ePN page for CallForwardonNoRep/y 



94 6 ISDN Supplementary Services 

First of all, the number of previous forwards must be less than the forward 
limit. Secondly the destination must be active for CFNR and inactive for CFU 
(since CFU takes precedence over CFNR). Finally, the destination must have a 
free channel (so that the call can be offered, i.e., the phone can be rung at the 
destination). We do not model this channel as becoming occupied (although it 
does so for a short period). This means that the transition models (as one indi­
visible action) the entire sequence of events starting with the call being offered, 
and finishing with the call being forwarded because it remained unanswered. 

What happens to calls that have been forwarded the maximum number of 
times and then reach a destination where some type of forwarding would be en­
abled, had the maximum not been reached? For CFU or CFB, the call request 
must fail, since it can be neither offered nor forwarded. Thus the model has two 
transitions Fail CFU and Fail CFB that remove the call request from Final Re­
quests and add a channel token to Dead Channels (implying that the only thing the 
user can do is to hang up and thus free the channel). For CFNR such a transition 
is not needed. Instead the phone keeps ringing at the destination after the CFNR 
timer has expired. 

A token on Final Requests represents a call request which is ready to be an­
swered, forwarded, or produce a busy signal. In this state a number of different 
activities may take place. As an example, the destination exchange may be 
checking for Call Forwarding, or it may be checking whether the called party is 
free or busy. It is also possible that the request already has been offered to the 
destination via a ringing phone. As a consequence of this abstraction, we found 

Request 

((OrigPty,OrigChan), 
(useCUG,E(groupno),oareq), 
DestPty, 
(FirstDestPty,fwdtype,fwdno» 

[lsICB(cuglist,groupno), 
inacc = nolA orelse oareq = noOUT] 

CUG 
Rejection 

(OrigPty,OrigChan) 

Dead 
Channels 

Channel 

(DestPtY,cuglist, 
groupno',inacc,outacc) 

CUG 
Data 

CUGsubsc 

Fig. 6.5. ePN page for Unsuccessfullncoming CUG Check 



6.2 ePN Model of ISDN Supplementary Services 95 

that the CPN model contained interactions which do not exist in the real ISDN 
network. This could have been avoided by splitting Final Requests into a number 
of places, yielding a slightly more complex net structure. 

The CPN page in Fig. 6.S describes one way in which a call may fail during 
an incoming CUG check. It is one out of nine pages, which each describe one 
particular combination of CUG information (in the call request) and CUG sub­
scription (for the destination party). Five of the pages correspond to successful 
checks while the remaining four correspond to CUG violations. Each of the 
pages contains a single transition, and these nine transitions are mutually exclu­
sive - in the sense that exactly one of them is enabled (for a given token at place 
Intermediate Requests). This reflects that the network is supposed to work in a 
deterministic way. Obtaining mutual exclusion between CPN transitions is actu­
ally not that easy. In a programming language we could have used a set of nested 
if-then-else statements, where the "final else" would cover all remaining cases. 
This is not possible for CP-nets unless we describe all nine combinations with a 
single transition (or use one transition for the five success cases and another for 
the four failure cases). Such an approach was discarded, because we thought that 
the arc inscriptions and guards would become too complex and hence decrease 
the readability of the CPN model. Analogously, ten different pages describe the 
details of outgoing CUG checks. Seven of these correspond to successful checks 
while the remaining three correspond to CUG violations. 

User 

((OrigPty,OrigChan), 
cuginfo, DestPty) 

ShortReq 

Requests 
Ready for 

CCBS 

((OrigPty,OrigChan), 
cuginfo,DestPty) 

[XPty = OrigPty 
orelse 
YPty = DestPty] 

(OrigPtY,OrigChan) 

(OrigPty,OrigChan) 

(OrigPty,DestPty, 
cuginio,ACTIVE) 

Dead 
Channels 

Channel 

CCBS 
Requests 

CCBSreq 

(XPty,YPty, 
cuginio2,ccbstag) 

Fig. 6.6. ePN page for Call Completion to Busy Subscriber 



96 6 ISDN Supplementary Services 

Now let us consider Fig. 6.5 in more detail. It describes a call specifying a 
cva to which the called party actually belongs. However, the call is rejected, 
because the CUGlist for the called party specifies that the group is barred for in­
coming calls (ICB). This is checked by the function in the first line of the"guard. 
The second line checks that the call is also unacceptable as a non-CVa call, be­
cause the destination party has no incoming access (inacc = nolA) or the calling 
party is not allowed outgoing access for the call (oareq = noOVT). 

The CPN page in Fig. 6.6 describes the invocation of Call Completion to Busy 
Subscriber. The left-hand transition describes the cases in which it is possible to 
Invoke CCBS, while the right-hand transition describes the cases in which it is 
necessary to Reject CCBS. Both transitions check call requests positioned at the 
place Requests Ready for CCBS. This is because we modelled invocation of the 
CCBS service as a two-step process. In the first step (covered on a separate 
page), the network checks whether the calling user has the option of invoking 
CCBS. When this is the case, the call request is moved from Final Requests to 
Requests Ready for CCBS (simultaneously the FWD info is removed since it is no 
longer needed). The transitions in Fig. 6.6 model the situation in which the call­
ing party actually makes a CCBS Request towards the called party, after the net­
work has decided that the forwarding history of the call makes this permissible. 
However, the CCBS invocation may still fail, under certain conditions described 
by the guard of the right-hand transition. Notice that the arc between this transi­
tion and CCBS Requests is a double arc. The two transitions in Fig. 6.6 are mutu­
ally exclusive in a similar way as described above. As other CCBS requests are 
made or cancelled the enabling of the two transitions may change (without the 
transitions occurring). 

We had planned to perform an analysis based on the underlying PT-net 
(defined in Sect. 4.6 of Vol. 2). Hence, we avoided non-uniform transitions, i.e., 
transitions involving a variable number of tokens (cf. Sect. 4.5 of Vol. 1). Vsing 
the full power of CPN ML, might have given a more concise CPN model, e.g., 
by reducing the number of transitions needed to model the cva checks. 

6.3 Validation of ISDN Supplementary Services 

When the CPN model had been constructed, it was validated by means of simula­
tion and occurrence graph analysis. The main purpose of this work was to iden­
tify interactions between the different services. In particular, we were looking 
for undesired interactions, i.e., situations in which the activities of one service 
could harm other services. Due to a tight project schedule and rather limited re­
sources, our validation was not as thorough and detailed as desired. However, we 
did a limited amount of work and identified a number of useful techniques, 
which we now describe. 

Firstly, it is possible to augment our CPN model by adding a number of 
facts, i.e., transitions which are not expected to be able to occur, because their 
enabling requirements correspond to states that we do not expect the ISDN serv­
ices to be able to reach. Detecting a state in which a fact transition becomes en­
abled means that we have found an unexpected/unwanted state, which may be 



6.3 Validation of ISDN Supplementary Services 97 

caused by an undesired service interaction. To use this technique the modeller 
needs to acquire some idea about the undesired interactions and the bad states to 
be avoided. Experience seems to be the key here - the more interactions you 
find, the easier it is to choose the appropriate fact transitions. A good starting 
point is facts that detect violations of implicitly assumed CUG restrictions, caused 
by undesired service interactions. 

Secondly, we modified our CPN model by eliminating as many uninteresting 
occurrence sequences as possible. For example, the number of subscription 
changes that a user is allowed to make was limited, as explained in Sect. 6.2. In 
this way we cut down the size of the occurrence graph, making interactions eas­
ier to detect - because they occur faster in a simulation and become more visible 
in an occurrence graph. 

Thirdly, it is easy to augment our CPN model to reflect the charging of the 
individual users, i.e., the amount of money which they have to pay for the serv­
ices. This is also a way to determine harmful interactions. As an example, plac­
ing a user in a local Closed User Group (to prevent expensive long-distance out­
going calls) will not work unless that user is also prohibited from forwarding 
calls to distant locations (since in ISDN the forwarding user is charged for the 
forwarded leg of a call). Charging can be modelled by adding an extra place, re­
ceiving a token for each charge being made. The token should reflect the identity 
of the charged user, the amount to be charged, and other details necessary for the 
subsequent analysis (e.g., information about other users involved and the type of 
charge). 

6.4 Conclusions for ISDN Supplementary Services Project 

The creation of a CPN model for the ISDN supplementary services turned out to 
be very helpful to investigate the potential interactions between the services. It 
also helped us to identify many ambiguities, omissions, and other shortcomings 
in the service recommendations. 

The entire project was accomplished by two persons over a period of one 
year. We used a total of nine man-months, including initial training and writing 
of reports. If we had been able to use more time, we would have made a more 
thorough validation of the CPN model. We would also have considered the feasi­
bility of modelling the Stage 2 and 3 recommendations. The creation of such 
models would probably be easier than Stage I modelling, since they could be 
based on the SDL diagrams provided in the Stage 2 recommendations - as done 
for the BRI protocol presented in Chap. 9. Complexity, however, might limit the 
number of services which could be analysed together. 

Based on the experiences from our project, we have obtained the following 
wish-list for service specifications: 

• An explicit specification of the rules which each service should obey is needed, 
making it easier to determine whether the behaviour of one service compro­
mises the intentions of another. 



98 6 ISDN Supplementary Services 

• A more precise (mathematical) correspondence between the three stages of a 
service specification (and their CPN models) is desirable. 

• Network-independent Stage 1 recommendations for the services would be use­
ful. This is illustrated by our CPN model, which ignored almost completely 
the specific characteristics of the ISDN network. The basic analysis of the 
service interactions could then be performed once, instead of being repeated 
for different networks. 



Chapter 7 

Intelligent Network 

This chapter describes a project accomplished by Carla Capellmann, Heinz Di­
bold, Bettina Hebing, and Eckart Prinz, Deutsche Telekom AG, Technologiezen­
trum Darmstadt, Germany. The chapter is based upon the material presented in 
[11]. The project was conducted in 1993. 

We present a project which studied the feasibility of using CP-nets and the 
CPN tools as part of an object-oriented method for the specification of services 
in an intelligent telecommunications network. The basic idea of the Object­
Oriented Petri Net Method (OOPM) is to regard a system as a set of interacting 
roles (which are parts of objects). First the individual roles and their interactions 
are identified. Then each role is specified by means of CP-nets and these nets are 
validated, both individually and as a whole. Finally, the roles are mapped into 
objects. 

One of the main benefits of the OOPM method is the fact that the same lan­
guage, CP-nets, is used in the analysis, specification, and design phases. This 
means that the method avoids the so-called "case gap" where one kind of de­
scription has to be translated into a totally different kind of description. This 
saves work, ensures a large degree of consistency between the different descrip­
tions, and makes it much easier to work in an iterative way. 

The project was successful. The new object-oriented method was used, evalu­
ated, and improved. Moreover, a formal and executable model of a network 
service was constructed and simulated. The project demonstrated the feasibility 
of the new method and showed that CP-nets can be used to provide a specifica­
tion of network services. The project also demonstrated the necessity of com­
plementing description languages (such as CP-nets) with system development 
methods, i.e., guidelines for the use of the language. 

Section 7.1 contains an introduction to the intelligent network and the 
Object-Oriented Petri Net Method. Section 7.2 presents the CPN model of the 
intelligent network. Finally, Sect. 7.3 presents a number of findings and conclu­
sions for the project. 



100 7 Intelligent Network 

7.1 Introduction to Intelligent Network 

In addition to the classical transmission and switching services, today's telecom­
munication networks are facing the additional challenge of providing the ability 
to collect and compute information, i.e., to provide network intelligence. To 
meet these demands we use Intelligent Networks (IN), which is a concept for the 
fast and economical provision of new services, going beyond the limits of con­
ventional telephony. Starting from the assumption that each IN service can be 
made up of a number of service-independent components, a logical and a physi­
cal architecture for service provision are defined. 

To specify the IN architecture, it is necessary to describe the individual serv­
ice components as well as their interaction. At the present time, the IN standards 
describe the architecture and services only in an informal way. As a consequence 
different interpretations arise and detailed investigations are difficult. Hence, a 
formal description of the behaviour of parts of the IN standards would be a great 
improvement. 

This description has to be made independently of the technology of the net­
work components. Therefore each component should be regarded as a black box, 
with a well-defined behaviour but no details about design or implementation. 
Due to the highly distributed and concurrent nature of telecommunication sys­
tems and the complexity of the new services, the specification method must pro­
vide: 

• Means for a comprehensible description of distributed systems, including the 
concurrency of the actions in the different components. 

• Powerful structuring facilities allowing the user to cope with the complexity 
of a large system. 

• Implementation-independent descriptions. 
• Means for execution and verification of the specifications. 
• Support for reuse of analysis, specification, design, and implementation. 

Based on these considerations, we developed the Object-Oriented Petri Net 
Method (OOPM), by elaborating an existing functional specification method [10] 
known as the Open Petri Net Method (OPM). To test the new method we used 
OOPM to specify and investigate a typical, but fictitious, IN service known as 
Universal Access Number (UAN). 

The UAN service allows a subscriber to use a single universal phone number 
yet have incoming calls mapped to different terminating line numbers (i.e., 
routed to different phones). The chosen terminating line depends on the geo­
graphical origin of the call (e.g., north, middle, or south zone) and the time at 
which the call is received (e.g., business, evening, night, or weekend). Two dif­
ferent functionalities are provided: a one-dimensional translation of a given 
UAN into a terminating line number (as function of the call origin), and a two­
dimensional translation (as function of origin and time of the call). The transla­
tion scheme can be changed by the subscriber over the phone network (by pre­
senting an authorisation code). The UAN service should be able to coexist with 
other services, e.g., the Queuing service, which distribute incoming calls to a 
group of terminating lines. If none of the group members are free the call is 



7.1 Introduction to Intelligent Network 101 

queued (up to a maximum queue length). Otherwise, the call is connected to one 
of the free lines in the group (randomly chosen). 

The basic idea of OOPM is to regard a system as a set of interacting roles 
(which are parts of objects). First the individual roles and their interactions are 
identified, using the object-oriented method described in [49]. Then each role is 
specified by means of CP-nets and these nets are validated, both individually and 
as a whole. Finally, the roles are mapped into objects. Figure 7.1 provides an 
overview of the OOPM method. A more detailed description can be found in 
[11]. 

The upper part of Fig. 7.1 shows that first the abstraction level is chosen, de­
termining the amount of details in the specification. Then the system and its rele­
vant environment are described. The system is regarded as a black box and the 
desired input/output behaviour is specified. Next the system is divided into sub­
tasks. For example, the DAN service is divided into Service Subscription, Service 
Modification, Service Cancellation, and Service Usage. For each subtask a role 
model is developed which describes the subsystem as a structure of objects that 
play certain roles and interact with each other, to fulfil the task of the subsystem. 
The roles describe partial behaviours, i.e., behaviour in a certain context or seen 
from a certain view. 

Role analysis Validation 

Validation 

~ Interaction sce~ 
.-~~~~~~~~~~-, 

Specification of individual roles 

Validation of role model 

Fig. 7.1. Overview of Object-Oriented Petri Net Method (OOPM) 



102 7 Intelligent Network 

The role analysis is performed as shown in the lower part of Fig. 7.1. First 
we identify the individual roles and derive the required interactions between 
these. This can be done, e.g., by considering a number of interaction scenarios. 
The result is a role diagram. Then the possible interactions between the roles 
are defined by means of contracts which specify the set of messages to be used. 
Next, a role specification is made for each individual role. It consists of a 
CP-net that describes the detailed externally perceivable behaviour of the role, 
conserving the maximum amount of concurrency. We then have a role model 
for the considered subtask. It consists of a role diagram, together with a number 
of contracts and role specifications (more details will be provided below). 

When the role models for all subtasks are constructed and validated, they are 
integrated into a role model for the entire system. During this synthesis process, 
it may be adequate, or even necessary, to merge related roles of different role 
models. The final role model serves as input for the system design. Here, the 
roles are mapped onto classes, thereby determining the architecture of the sys­
tem. The individual classes may then be specified by reapplying the steps of 
OOPM using a different, more detailed abstraction level. Note that validations 
are done throughout the entire specification process and not just afterwards. 

Roles are similar to classes, in the sense that they have an internal state and a 
number of methods that can be used to inspect and modify the state. Each role is 
described by a CP-net, which often consists of a single page. The state is repre­
sented by a number of places known as internal places, while each method is 
represented by one or more transitions, which receive request messages and re­
turn reply messages via a number of interface places. The state of a role can 
only be changed or inspected by means of the methods. This is reflected by the 
fact that the CP-net for a role is an open subnet having the interface places as 
border nodes and the internal places as non-border nodes (when considered part 
of a large non-hierarchical net). 

An object playing a role may be seen as an instance of that role. Hence, the 
object is represented by an instance of the CPN page which represents that role. 
The marking of the internal places represent the state of the object, while the 
marking of the interface places represent messages to or from the object. The 
communication is asynchronous, since messages are represented by tokens which 
are deposited by one transition and later removed by another. 

For the development of industrial systems, elaborate tool support is manda­
tory. Hence, we would want a tool which supports all steps in OOPM. However, 
since OOPM is a new method, such a tool does not exist. Instead we used the ex­
isting CPN tools - often in a rather untraditional way. As an example, we con­
structed the role diagrams in such a way that the roles were represented as sub­
stitution transitions (drawn as large circles), while the other elements were aux­
iliary objects. This automatically created a link from each role to a page con­
taining the detailed CPN specification of the role. 



7.2 ePN Model of Intelligent Network 103 

7.2 CPN Model of Intelligent Network 

This section presents the results of applying OOPM for the specification of the 
Universal Access Number (UAN). We concentrate on the role analysis, present­
ing the role models for Service Subscription and Service Usage. The results of 
other parts of the OOPM will only be sketched. 

Service Subscription is one of the administrative tasks that the UAN service 
has to perform. Triggered by a request for service subscription, the system 
checks whether a subscription is possible, performs the necessary actions, and 
makes an appropriate response. The role diagram for this subtask is given in Fig. 
7.2. The large circles represent different roles in the subsystem and its environ­
ment (the roles of the environment are drawn with a thicker border line). 

• The Subscriber belongs to the environment of the UAN system. This role ini­
tiates a service subscription by sending a request. 

• The Subscription Manager coordinates all actions that are needed to perform 
the different kinds of subscriptions (e.g., a UAN sUbscription). 

• The UAN Provider delivers, on request, an available UAN. Analogously, the 
AuthCode Provider delivers an available authorisation code. 

• The remaining three roles are data managers that store different kinds of data. 

The lines between the roles represent the possible interactions (thick lines are 
used for interaction with the environment, while thin lines are used for interac­
tions inside the system). The small circles represent the contracts that define the 
messages to be used for the interaction (a double circle indicates that the sending 
role knows several objects which play the role of the receiver, while a single cir­
cle tells us that there is only one such object). We see that the Subscription Man-

Fig. 7.2. Role diagram for Service Subscription 



104 7 Intelligent Network 

ager is able to send messages to all the other roles, while it is only able to receive 
messages from three of them. 

The upper part of Fig. 7.3 shows the role specification for the AuthCode 
Provider (which is very simple). The internal state of the role is represented by 
the place Available AuthCodes. It contains a token for each of the available 
authorisation codes. With respect to the Service Subscription role there is only 
one method, represented by transition ProvideAuthCode. The method is invoked 
by sending a ReqAuthCode message (via the interface place 3/4, which is used to 
hold messages defined in contracts 3 and 4). When the transition occurs, the 
method is executed (as an atomic action). The sid variable is an input parameter 
specifying the subscriber identity, while the ac variable is an output parameter 
returning an authorisation code. 

The colour set declarations in Fig. 7.3 specify messages to be exchanged via 
the interface place 3/4. This means that they reflect parts of contracts number 3 
and 4. In our project we specified the contracts directly in Standard ML (as a set 
of colour set declarations). However, it would probably be better to specify the 
contracts in a different way, and then derive the colour set declarations from the 
contracts (preferably totally automatic). The integer type AuthCode represents 
authorisation codes (with six digits), while the union type AuthReq represents 
request and reply messages. It contains all elements which are on the form 
ReqAuthCode(sid) or AvailAuthCode(sid,ac), where sidE SId and aCEAuthCode. 
For more details on union types, see Sect. 1.4 of Vol. 1. 

The role specification of the UAN Provider is very similar to the specification 
of the AuthCode Provider. The main difference is that AuthCode is replaced by a 
type which represents the possible UANs. 

AuthCode Provider 

1''''''''''1 ReqAuthCode(sid) 
II' 3/4 III----'-----'---'--~ Provide 

AuthCode 
ac 

11",,,,,,,,11 AvaiIAuthCode(sid,ac) 
AuthReq 

UAN Data Manager 

color Sid = string; 
color AuthCode = int with 100000 .. 999999; 
color SldxAuth = product Sid * AuthCode; 
color AuthReq = union ReqAuthCode : Sid + 

AvaiiAuthCode : SldxAuth; 
var sid: Sid; var ac : AuthCode; 

11""';"'1111 StoreUanD(uan,uanD) 

1""""",11 

Store 
UAN Data 

(uan,uanD) 

UanStoreReq 

Fig. 7.3. Two role specifications for Service Subscription 

AuthCode 

UanxUanD 



7.2 ePN Model of Intelligent Network 105 

The lower part of Fig. 7.3 shows the role specification for the UAN Data 
Manager, which is responsible for the storage of UAN data, i.e., the translation 
schemes that map call origin (and possibly call time) into terminating lines. For 
this (and all following) role specifications we have omitted the colour set decla­
rations. They provide details about the format of the stored data. The variable 
uan denotes a universal access number, while the variable uanD denotes a trans­
lation scheme (i.e., a piece of UAN data). The two other data managers (in the 
lower part of Fig. 7.1) have role specifications which are similar to the UAN 
Data Manager. 

Figure 7.4 shows the role specification for the Subscription Manager. It has a 
single method which interacts with six different roles (via the six interface 
places). A subscription is performed in two steps. When a subscription request 
ReqSubscr( sid,uanD) is ready (at place 112), the upper transition occurs. It 
reads the request in which sid represents the subscriber identity while uanD is 
the subscription data. Two messages are sent to the AuthCode Provider and the 
UAN Provider (via places 3/4 and 5/6). When these roles reply (via messages at 
the same two interface places), the lower transition becomes enabled. It sends a 
subscription confirmation ConfSubscr(sid,uan,ac) to the Subscriber (via 1/2). 
Moreover, three messages are sent (via 7, 8, and 9). They request the three data 
managers to update their data for uan. The left manager stores the subscriber 
identity sid, while the other two store the authorisation code ac and the transla­
tion scheme uanD. 

ReqSubscr(sid,uanO) 

11(~I~~II:~crReq 
11111111111111, 

ConfSubscr(sid,uan,ac) 

StoreSubscr 
(uan,sid) 

9 III' 
1111111111111 

SubscrStoreReq 

Receive 
Request 

ReqAuthCode( sid) 

ReqUan(sid) 

(sid,uanO) 

¢Sldxu,nD 
(sid,uanO) 

UanReq 

Perform 
Subscription 

StoreAuthCode 
(uan,ac) 

AuthCodeStoreReq 

AvailUan(sid,uan) 

AvailAuthCode(sid ,ac) 

StoreUanOata 
(uan,uanO) 

111111111111 

II: 7 II11 
11111111111111 

UanDataStoreReq 

Fig. 7.4. Role specification for Subscription Manager 

AuthReq 



106 7 Intelligent Network 

Note that the method in Fig. 7.4 is specified in such a way that the maximum 
degree of concurrency is maintained. The AuthCode and the VAN are requested 
in parallel and so are the three database updates. Moreover, it is possible to per­
form the upper and lower transitions concurrently for two different requests. 
We have only modelled the successful case, in which the subscription is possible 
(because an AuthCode and a VAN both are available). However, it is easy to ex­
tend the CP-net in Fig. 7.4 by adding an extra transition to take care of the 
situation in which one or both replies (on places 3/4 and 5/6) represent reject 
messages. 

Each of the role specifications is validated by means of simulation. This is 
usually done as soon as the role specification has been finished (or even before). 
To make such a simulation, the modeller "emulates" the surrounding roles, by 
using the Change Marking command (in the CPN simulator) to create tokens 
representing messages from these roles. It is also sometimes necessary to add to­
kens to some of the internal places. This is the case, e.g., for a role which re­
trieves data that are stored by another role. 

When all roles of a role model have been specified and validated, the entire 
role model is validated to see whether the individual parts are consistent and in­
teract in the expected way. This is done by means of simulations in which the 
CPN pages for the individual roles communicate via the interface places, which 
are global fusion places. To improve readability we have drawn these places with 
a special line pattern and hidden the fusion tags (since they provide no additional 
information). 

Auth Code 
Subscriber Provider 

UAN Subscription UAN Data 
Provider Manager Manager 

Auth Data Subscr Data Step 
Manager Manager No 

51 

52 

52 

53 

54 

55 

orth,494012 456),(South, 989654321))) 55 

55 

StoreSu scr(0180444 ,"Otto") 55 

Fig. 7.5. Message sequence chart from simulation of Service Subscription 



7.2 ePN Model of Intelligent Network 107 

To inspect the simulation results we used message sequence charts like the one 
shown in Fig. 7.5. The diagram displays the messages which are sent between the 
different roles. First we have a ReqSubscr message from a Subscriber "Otto" to 
the Subscription Manager. The request specifies a one-dimensional translation 
scheme mapping calls from North to 4940123456 and calls from South to 
4989654321. Then we have a ReqAuth Code message from the Subscription 
Manager to the AuthCode Provider and a ReqVan message from the Subscription 
Manager to the VAN Provider. Both of these occur at step 52, and hence they are 
concurrent. In the next two steps the Subscription Manager receives messages 
containing an available UAN and an available authorisation code. Then the 
Subscription Manager confirms the subscription, and sends messages to the three 
database managers. All four messages are concurrent (at step 55). 

Message sequence charts can now be automatically created by the ePN simu­
lator, by making calls to a Standard ML library (from code segments attached to 
the individual transitions). The diagrams make it very easy and fast to investigate 
whether simulations have the expected behaviour. For more information about 
message sequence charts, see the User's Manual [15]. 

Fig. 7.6. Role diagram for Service Usage 



108 7 Intelligent Network 

Above, we have presented the role model for Service Subscription. Now, we 
consider the role model for Service Usage, i.e., the subtask that describes the ac­
tual use of the VAN service. When a user dials a VAN, the service connects the 
call to a terminating line, which is determined by first computing the call desti­
nation specified by the translation scheme of the VAN, and then taking possible 
queuing for a group of lines into account. The role diagram for Service Usage is 
shown in Fig. 7.6. It defines the following roles: 

• The User belongs to the environment of the VAN system. This role initiates a 
service usage by dialling a VAN. 

• The UAN Feature Manager coordinates all actions that are needed to compute 
the call destination, while the Line Feature Manager is in charge of establishing 
the connection. 

• The UAN Data Manager retrieves the VAN data, i.e., the translation scheme 
for a given VAN. 

• The Area Classificator and the Time Classificator determine the area from 
which the call was made and the time at which it was received. 

• The User Line Monitor administers the status (idle/busy) of the individual 
lines. It also records how lines are grouped. 

• The Queuing Manager administers a queue of calls for each group of lines, 
while the Charging Manager is responsible for all charging aspects. 

Figure 7.7 shows the role specifications of the UAN Data Manager, the Area 
Classificator, and the Time Classificator. All of them are very simple, and simi­
lar to the specification of the AuthCode Provider in Fig. 7.3 (except that the 
rightmost arc now is a double arc). The variable eli is used to denote the number 
of the calling line. 

UAN Data Manager 

111""""1 ReqUanD(uan) 

II: 2/3 )II,+-=-:-;-;--;::-;----=c---1 
'","",111 RetUanD(uan,uanD) 

UanReq 

Area Classificator 

111""""1 ReqArea(cli) 

II: 4/5 )114-::-----,-----,-,,----,-------1 
"'"ur,111 RetArea(cli,area) 

AreaReq 

Time Classificator 

II"""", ReqTime(cli) 
II' 6/7'11----'----'-'----J>l 
"'"ur,'III RetTime(cli,timep) 

TimeReq 

Retrieve 
UAN Data 

Retrieve 
Origin of Call 

Retrieve 
Time of Call 

(uan,uanD) 

(eli,area) 

timep 

Fig. 7.7. Three role specifications for Service Usage 

UanxUanD 

NoxArea 

TimePeriod 



7.2 ePN Model of Intelligent Network 109 

Figure 7.8 shows the role specification for the VAN Feature Manager which is 
responsible for the computation of the destination for a VAN call. Triggered by 
an IncomingCall specifying the calling line eli and the dialled universal access 
number uan, the upper transition sends a message to the VAN Data Manger (via 
the interface place 2/3). The reply contains the translation scheme uanD for uan. 
Next, a message is sent to the Area Classificator (via 4/5). If the translation 
scheme is two-dimensional another message is sent to the Time Classificator (via 

IncCal/ 

IncomingCall(cli,uan) 

ReqUanO(uan) 

Receive 
Request 

(cli,uan) 

UanReq ~N"'U," 
RetUanO(uan,uanO) 

Request Oata 
for 

Translation 

(cli,uan) 

ReqArea(cli) 

AreaReq 
(cli,uanO) 

[Oim(uanO)=2]%(ReqTime(cli)) 

~'I"""""II 
'II 6/7 II TimeReq 

RetArea(cli,area) 

(cli,uanO) 
[Oim(uanO)=1] ./ 

~-----lL..----.~ 
Compute 

1-dim 
Translation 

1111"",1111 

RetArea(cli,area) 

Compute 
2-dim 

Translation 

[Oim(uanO)=2] 

EstabCall(cli,OneOim(uanO,area)) EstabCall(cli,TwoOim(uanO,area,timep)) 

~'IIII'''''III( 
,III 8 III 

/11111111111 

EstabReq 

Fig. 7.8. Role specification for VAN Feature Manager 



110 7 Intelligent Network 

6/7). This arc expression uses the %-operator, which is a shorthand for an 
if-then-else construction. When the left-hand expression evaluates to true, the 
value is the value of the right-hand expression. Otherwise the value is the empty 
multi-set. 

The reply/replies are handled either by Compute i-dim Translation or by 
Compute 2-dim Translation (using the ML functions OneDim and TwoDim, re­
spectively). In both cases, we end up with an EstabCall message on place 8. The 
token colour contains a pair where the first element is the calling line, while the 
second is the terminating line to which the call should be connected (unless modi­
fied by the Queuing service). 

Figure 7.9 shows the role specification for the Line Feature Manager which 
either offers the call directly to the terminating line or passes it through a wait­

EstabReq 

(eli,tli) 

11111111111 

.---JI:II"~')~ 
EslabCall(eli,lli) EslabCall(eli,tli) 

ReqEnqueu(eli,lli) 

C IE r II,i"1 
on nq(g I) 11111111 QueueReq 

ReqSlalus(lli) 
)""",,1 

Oequeue(gli) ~ Reqldlellne(gli) 

.. ~_ .. ~.~"""",I .--__ ----L.---, 

Monit~orReq'19/101 . 

RelSlalus (gli,lli) 
FullQueue 

(eli,gli) 

(eli,lli) (eli,lli) 

l ' "I RelldleLlne 

'1" (glo,llo) 

(1Ii,Busy) ¢ 
RelSlalus NoxNo Firsl(eli,gli) 

CaIlRejeel(eli,tli) 

(11i,ldle) 

SetBusy(lli) 

1IIIIUI11 

~--."I: 13 11114-.. ---
11111111111 C 

CaIlConnect(eli,tli) ChargeReq aIlConnecl(cli,tli) 

l """""1 ) ~---"·I'I, 14 :II· .. ----~ 
Ihllllill 

Gal/Resp 

CaIlRejecl(cli,gli) 

Fig. 7.9. Role specification for Line Feature Manager 



7.2 ePN Model of Intelligent Network 111 

ing queue for a group of lines. Direct calls are handled by the left-hand part of 
the CP-net, while group calls are handled by the right-hand part. For a direct 
call, we first Request Line Status for the terminating line tii. Then we either 
Reject Call Attempt or Establish Connection. A group call is handled in a similar 
way, but now there are additional transitions to Invoke Queuing, Request Idle 
Line from Group, and Invoke Dequeuing. In all cases, we end up by sending a 
call response to the User (via 14). If the call attempt was successful, we also send 
a message to the Charging Manager (via 13). 

Figure 7.10 shows the role specification for the User Line Monitor which ad­
ministers the status of terminating lines. It also records how lines are grouped. 
The role offers three methods to CheckLineStatus, Set Status Busy, and Retrieve 
Idle Line from Group. 

We have now specified all the individual roles from the role diagram in Fig. 
7.6 except User, QueuingManager, and Charging Manager, which we shall omit. 
A typical message sequence chart for a simulation of the combined roles (i.e., the 
subtask Service Usage) is shown in Fig. 7.11. It represents a successful VAN call 
which uses the one-dimensional translation scheme from Fig. 7.5 and no queu­
ing. 

The role models for the remaining two subtasks (Subscription Modification 
and Subscription Cancellation) are specified, in a similar way as presented above. 
When they have been specified and validated we are ready for the synthesis phase 
of OOPM. In this phase the four role models are integrated into a single CPN 
model which represent the entire VAN service and its environment. The final 
role model is shown in Fig. 7.12. During the integration some roles are merged. 
As an example, Fig. 7.12 contains a UAN Data Manager with the role specifica­
tion shown in Fig. 7.13. This role is obtained by merging a number of U AN 
Data Managers described in the different role diagrams (e.g., the UAN Data 
Manager from Fig. 7.3 and the UANDataManager from Fig. 7.7). 

ReqStatus(tli) 
Check 

RetStatus(tli,status) 
Line Status 

Monitor II: 
111'''''''11 
9/10 11 

SetBusy(tli) 
--" 

Set Status 
Busy 

11""",11 

ReqldleLine(gli) 
Retrieve Idle 

'-------:::--:-::-,.-,-....,..-,:--:::---1 Line from Group 
RetidleLine(gli,tli) 

(tIi,status) 

[status=BusyJ%(tIi,status) 

(tIi,Busy) Status of 
~User Lines 

NoxState 

(tli,ldle) 

(gli,tli) 

NoxNo 

Fig. 7.10. Role specification for User Line Monitor 



112 7 Intelligent Network 

User 
UAN Feature 

Manager 
UAN Data Area 
Manager Classificator 

Time Line Feature 
Classificator Manager 

RetUanD(Ol 04444,01 [(N rth,49401234 6),(South,49 9654321)]) 

ReqArea(4 30641742) 

RetArea(493 641742,Nort ) 

Est bCall(4930 1742,494012 456) 

User Line 
Monitor 

Queuing 
Monitor 

Charging 
Monitor 

Charge(4 30641742,49 0123456) 

Fig. 7.11. Message sequence chart from simulation of Service Usage 

Fig. 7.12. Synthesised role model of VAN 

Step 
No 

81 

82 

83 

84 

85 

86 

87 

88 

89 

89 

89 



7.2 ePN Model of Intelligent Network 113 

StoreUanD(uan,uanD) Store (uan,uanD) 

UAN Data 

DeIUanD(uan) Delete (uan,uanD) 

."",[ 
UAN Data 

(uan,uanDOld) 
III XchgUanD(uan,uanD) Exchange /"'" UAN 

.( 11/121 ~ UAN Data Data I """I C11C12 (uan,uanD) 
UanxUa nO 

ReqUanD(uan) 
Retrieve (uan,uanD) ..... 

UAN Data 
RetUanD(uan,uanD) 

1111111111111 ReqUanD'(uan) 
Retrieve (uan,uanD) 14/1511 

UAN Data 11,,,,,,,,,11 
RetUanD'(uan,uanD) 

4C15 

Fig. 7.13. Role specification for synthesised VAN Data Manager 

Subscriber 

UAN 
Resource 

Subscription 
Data 

Authorisation 
Resource 

!~2J 

Authorisation 
Checker 

UAN 
Data 

Time 
Classilicator 

t1s 

User Line 
Monitor 

Fig. 7.14. VAN design model 

Area 
Classilicator 

Queuing 

User 

Charging 



114 7 Intelligent Network 

During the design phase, the roles are mapped onto classes to be used during 
the design and implementation. This gives us the design model shown in Fig. 
7.14. A class library facilitates the reuse of class specifications and implementa­
tions. As examples, we see that UAN Resource and AuthCode Resource are both 
based on class C2, while UanData and Subscription Data are based on C3. 

7.3 Conclusions for Intelligent Network Project 

The project leader was a senior expert, who was knowledgeable on both intelli­
gent networks and CP-nets. He supervised the work and advised the project 
group, but otherwise he did not participate. The other three project members 
had less than one year of experience with intelligent networks. With respect to 
Petri nets, two of them had only rudimentary knowledge while the third had a 
theoretical background in Petri nets, but no modelling experience. None of them 
knew the CPN tools. The project was carried out over a period of one month in 
which all three persons worked part-time on the project. The total use of man­
power is estimated as five weeks. During this time the project members learned 
how to use the OOPM method and how to model and simulate by means of 
CP-nets. They also became acquainted with the details of the VAN service. 

The final system model consists of 17 roles, of which 14 were modelled by 
means of CP-nets. As illustrated by the examples in Sect. 7.2, some of the nets 
are very simple while others are a bit more complex. Altogether, the CPN model 
contains 41 interface places, 20 internal places, and 43 transitions. The model 
constitutes a formal specification of the VAN service. It enables a precise inves­
tigation of the details of the service and makes it possible to locate points where 
the informal descriptions are vague, ambiguous, or even erroneous. 

Since OOPM is a new method, which is still under development, the project 
group had to make a lot of decisions concerning the detailed mapping of object­
oriented concepts into CPN concepts. A number of alternatives have to be inves­
tigated before a full assessment can be given. However, a couple of general 
problems have been recognised: 

• Some tasks are divided into actions performed by different objects. When this 
is the case, it is difficult to obtain atomicity of transactions. 

• In our approach, the recipient of a message is addressed by directing the mes­
sage token to a particular interface place. This differs from object-oriented 
languages, where objects usually are addressed via object identifiers. 

Although the CPN tools know nothing about the OOPM method, the tool set was 
able to support the complete modelling and validation process. With a modest 
amount of work the tools could be extended to provide a better support for role 
diagrams, including a check of their consistency with role specifications. We 
only encountered a few tool-related problems: 



7.3 Conclusions for Intelligent Network Project 115 

• The turnaround time between the editor and simulator was quite long. We 
gradually extended the declarations to represent more and more contracts. 
Each time new declarations were added, we had to recheck the entire model 
and generate the simulation code from scratch. Since our project, a new ver­
sion of the CPN tools has been developed, providing a faster and more incre­
mental syntax check and code generation. 

• We found no tool support for inheritance. Several roles have the same behav­
iour - except for the data types that they use. Examples are the AuthCode Pro­
vider and UAN Provider. We would have liked the CPN tools to support page 
instantiation with parametrisation of the involved colour sets. 

• In Standard ML it is not possible to reuse constructor names. Hence, we some­
times had to invent two slightly different message names. Examples can be 
found in Fig. 7.13, where the two lower transitions receive the messages 
ReqUanD and ReqUanD' and send the messages RetUanD and RetUanD'. 

The two main goals of the project were both successfully achieved. The Object­
Oriented Petri Net Method was used, evaluated, and improved. Moreover, a 
formal and executable model of the UAN service was constructed and simulated. 
The project demonstrated the feasibility of OOPM and showed that CP-nets are 
suitable for the specification of IN services. The project also demonstrated the 
necessity of complementing description languages (such as CP-nets) with system 
development methods (such as OOPM). Among the other achievements, the fol­
lowing points should be mentioned: 

• It was possible to construct a well-structured, formal and executable model of 
the UAN service using rather few resources. 

• The CPN model was validated by means of simulation (and it could probably 
also have been verified by means of occurrence graphs). Hence our trust in the 
correctness of our UAN specification is quite high. 

• The CPN specifications of roles describe the pre- and post-conditions of each 
method. The nature of Petri nets make it straightforward to maintain the 
maximal degree of concurrency. 

• The executability of the CP-nets makes it easy to check the different parts of 
the system specification towards our own (informal) conception of the desired 
behaviour - of a role, role model, or the entire system. 

• Validation of the CPN models was performed throughout the entire project 
and not just at the end. This provided immediate feedback to the project 
group, yielding additional insight which could be used to improve the specifi­
cation of the remaining system parts. 

A brief comparison of OOPM with two other system development methods 
(including OPM) can be found in [11]. 



Chapter 8 

Communications Gateway 

This chapter describes a project accomplished by Daniel J. Floreani, Defence 
Science and Technology Organisation, Adelaide, Australia, in cooperation with 
Jonathan Billington and Arek Dadej, University of South Australia, Adelaide, 
Australia. The chapter is based upon the material presented in [25]. The project 
was conducted in 1995. 

We present a project in which a gateway between a Tactical Packet Radio 
Network and Broadband ISDN is being designed - as part of a large project that 
aims to bring modern telecommunications services to the Australian Defence 
Force. We used eP-nets and the ePN tools to investigate the gateway architec­
ture and behaviour prior to implementation. In particular, we investigated the 
call control application of the gateway. We first developed a ePN model speci­
fying the service to be provided by the gateway. Then we developed a ePN 
model constituting a refined specification, involving more architectural aspects 
of the gateway. 

We compared the behaviour of the refined specification with the original 
specification. The two ePN models are at different levels of abstraction. How­
ever, the interfaces to them are common, and hence we can compare the lan­
guages determined by the interface primitives. After several iterations of editing, 
simulation, and occurrence graph analysis, the two models were proven to have 
the same languages, i.e., the same sequences of interface primitives. During this 
work, we removed many minor errors and we also located three more funda­
mental modelling errors. 

The use of eP-nets and the ePN tools within the specification stage of the 
gateway has been successful. The fact that the first attempts to refine the specifi­
cation did not meet the original gateway specification shows how easy it is to 
make mistakes when specifying the behaviour of systems. 

Section 8.1 contains an introduction to the communications gateway. Section 
8.2 presents the two ePN models of the gateway. We also discuss how the mod­
els were validated and how they were compared to each other. Finally, Sect. 8.3 
presents a number of findings and conclusions for the project. 



118 8 Communications Gateway 

8.1 Introduction to Communications Gateway 

The Australian Department of Defence has chosen Asynchronous Transfer Mode 
(ATM) as the target communications architecture for its command and control in 
the 21st century. To provide modem and flexible communications to the soldier 
in the field, a Tactical Packet Radio Network will be integrated with Broadband 
ISDN (B-ISDN). To do this, a gateway between the two kinds of networks must 
be specified and implemented. 

We describe the specification of the Call Control Application (CCA) of the 
gateway. It is responsible for the transfer of call control intent between the radio 
network and B-ISDN. As can be seen from the left-hand side of Fig. 8.1, the Call 

Local 
Interface 

B1 
A A 

Radio 
Call Control B-ISDN 

Network ~ ~ 
Interface 

Application Interface 

B B 
Sending ~ Call Control ~ Receiving 
Interface Application Interface 

DI D1 

Service Service 

Handler Handler 

Interface Interface 

Fig. 8.1. Call Control Application and its interfaces 

Release Release 

Response Indication Request 

Fig. 8.2. State/transition diagram for interfaces A-C 



8.1 Introduction to Communications Gateway 119 

Control Application has four interfaces - to the radio network, to the local user, 
to the B-ISDN, and to the service handler. The latter is a process that manages 
the specific end user service transfer through the gateway (voice, data, messag­
ing). It turns out that the first three of these interfaces have the same service 
specification, and hence it is more appropriate to view the interfaces as shown in 
the right-hand side of Fig. 8.1. Here, we have merged interfaces A, B, and C into 
a single interface. However, simultaneously, we have split this common interface 
into a sending interface and a receiving interface. This simplifies the modelling 
task without any loss of generality, since sending and receiving are performed by 
two totally independent processes. The state/transition diagram of the common 
interface is shown in Fig. 8.2. The left-hand part constitutes the sending interface 
while the right-hand part constitutes the receiving interface. It is possible to re­
turn to state Idle from all other states via a Release Indication or a Release 
Request. For readability, this has only been shown on the arcs from CallActive. 

A much more detailed description of the gateway can be found in [25]. There 
we also describe all the different steps in the methodology by which the gateway 
is developed. 

8.2 CPN Model of Communications Gateway 

A CPN model of the sending interface is shown in Fig. 8.3. It uses the colour set 
Istate which has a value for all possible states of the sending and receiving inter­
faces: 

color Istate = with idle I callPres I callInc I callRec I callDel I callAct; 

The CP-net has the occurrence graph shown in Fig. 8.4. It is straightforward to 
see that it matches the left-hand part of the state/transition diagram in Fig. 8.2. 

The receiving interface and service handler interface were modelled in a 
similar way and compared to their state/transition diagrams. 

idle callPres callPres callRec 

Ii From 
[call Pres, 

callRecll 

i call Act 

[i<>idle] 

idle 

Fig. 8.3. CPN model of the sending interface 

[i<>idle] 

idle 



120 8 Communications Gateway 

When this had been done, the next task was to develop the service specifica­
tion of the gateway. This required several modelling iterations. The main prob­
lem was to determine an adequate level of abstraction and the actual type of 
services to be modelled. To avoid making too many design decisions during the 
service specification, we focused on the information flow, ignoring gateway 
states, messages, and internal primitives. Previously, each interface was consid­
ered in isolation. Now we describe how the primitives interact with each other. 

The most abstract view of the new CPN model is shown in Fig. 8.5. It shows 
that all communication between the Sending Interface, the Receiving Interface, 
and the Service Handler Interface passes through the Call ControlApplication. All 
transitions are substitution transitions and the subpage for Send Primitives is 
shown in Fig. 8.6. The lower part is identical to Fig. 8.3. Now the transitions no 
longer just change the state of the Sending Interface. They also add and remove 
information from the Call Control Application. 

The colour set declarations are shown below. Info has an element for each of 
the service primitives. The argument to CaliRelease tells whether it is the sender 
or the receiver that initiates the release. The Cstate, Count and Clean colour sets 
are explained below. 

color SR = send I receive; 
color Info = union CallInfo + CallAccept + CallResponse + CallReject + 

CallRelease: SR + Alert + ServiceRelease + Configure; 
color Cstate = with init I clean I normal; 
color Count = int with 0 .. 10; 
color Clean = product Cstate * Count; 

! ReleaseRequest ! 
! _!~~-,,~~~~_J 

1 ReleaseIndication! 
l {i=Ca1lAct} ! 

Fig. 8.4. Occurrence graph for the sending interface 



(init,n) 

8.2 CPN Model of Communications Gateway 121 

Call Control Application 

Service 
Handler 

Primitives 

p 

Pslate 

Fig. 8.5. Most abstract CPN view of Call Control Application 

Alert 

(c.n) 

[i From 
(caIlPres, 
callRecll 

info 

I'CaURelease(receive) + 
[c=nonnal]%ServiceRelease 

(c,n) 

[i<>idle] 

(c,n) 

[info From 
[CallReject, 

CaIlRelease(send) 
CallInfoj, 

CalIRelease(send) 

if Clean(info) 
then (clean,n) 
else (c,n) 

Fig. 8.6. CPN page for Send Primitives 

(clean,n) 



122 8 Communications Gateway 

The net elements with thick lines are the most important. They describe how the 
sending interface behaves when different primitives are performed. The From 
operator (in two of the guards) returns true if the left argument appears in the 
right argument (which is supposed to be a list). The operator is defined as shown 
below and is polymorphic. In the guard of Connect Response it is used for ele­
ments of Istate. In the guard of Release Request it is used for elements of Info. 

fun From(Elem, First:: Rest) = 
if Elem = First then true else From(Elem, Rest) 

I From(Elem,[]) = false; 
infix From; 

The net elements with thin lines are used to Clean the CPN model when a is re­
leased. When transition ReleaseRequest occurs it uses Clean(info) to determine 
whether cleaning should start. If this is the case the token on place Clean changes 
to (clean,n) where n denotes the number of tokens to be cleaned, i.e., removed 
from place Call Control Application. 

The actual cleaning is done by a transition on page Clean, which is shown in 
Fig. 8.7. It is the subpage of the Clean transition in Fig. 8.5. The variable 
infoMS is a multi-set variable. This means that it is bound to a multi-set of Info 
values. The guard Checks that the size of infoMS is n and that all tokens belong 
to a certain subset of Info. 

Now let us consider the leftmost transition in Fig. 8.6 in more detail. When 
transition Connect Indication occurs, the state of the Sending Interface changes 
from idle to caliPres. The Call Control Application receives a CallInfo token 
- representing the information necessary to setup a call. The Cstate in the Clean 
token changes from init to normal, while the Count is incremented by one (since 
the Call Info token is of a kind which has to be cleaned). The remaining transi­
tions work in a similar way. 

(c1ean,n) (clean,O) 

[Check(infoMS,n)] 

infoMS 

Fig. 8.7. CPN page for Cleaning 



8.2 CPN Model of Communications Gateway 123 

The init state of Clean is never restored and hence our model can only process 
one call. This is sufficient because calls never interact, except for the competition 
for resources. In practice, the gateway distinguishes between the different calls 
by using a call reference (in a similar way as described in Chap. 9). 

Once the ePN model of the gateway specification was completed, it was vali­
dated by means of simulation. Interactive simulation is very useful in the early 
design stages, since it allows the designer to test the basic ideas behind the design. 
However, the model is too complex to be validated by simulation alone, and 
hence we also used occurrence graph analysis. 

The occurrence graph is small. It contains only 365 nodes and 860 arcs. We 
first showed that there were no undesired dead markings and that the gateway 
was able to establish a call in the expected way. To perform these tests we used 
the standard occurrence graph queries and we also wrote a few simple system­
dependent queries. 

When errors were found, they were rather straightforward to correct. Here it 
turned out to be useful that the ePN tools allow the user to load the marking of 
interesting occurrence graph nodes into the simulator. In this way it is easy to 
investigate a marking and its enabled transitions. As an example, we can find out 
how a dead marking was reached. 

Once the service specification was completed, it was time to consider refine­
ment of the gateway specification. This involves designing an architecture that 
will provide the functionality necessary to fulfil the specification. The proposed 
functional architecture is shown in Fig. 8.8, which is actually the most abstract 
page in our refined ePN model. All transitions are substitution transitions. We 
see that the Call Control Application has been segmented into three functional 
blocks. Sending Call Control and Receiving Call Control are responsible for call 
setup and clearing within their respective interfaces. This is achieved by utilising 
the signalling protocols of the individual networks to transfer the necessary in­
formation. Gateway Call Control is responsible for handling the interworking 
between the other two call controls. It interacts with the other processes within 
the Gateway Call ControlApplication and with the Service Handler. 

Place Gateway Call Control 10 (in the centre of Fig. 8.8) represents the com­
munication mechanism within the gateway. It contains MIP messages, which is a 
shorthand for Medium Independent Protocol messages. There is no queuing, and 
hence MIP message can be consumed, by the relevant process, in any order and 
at any time. We could model a FIFO queue for each process, but this is consid­
ered to be an implementation issue to be added at a later refinement stage. 

Place Node Location represents a process that provides routing information. 
The three Resource Management places represent processes that are responsible 
for the monitoring of computing resources, call identifiers, and bandwidth. 
These processes are queried during call establishment to check whether there are 
adequate resources for the call. This is especially complex for the Gateway 
Resource Management process, as it must cope with issues related to radio propa­
gation which require complex ionospheric prediction algorithms. However, such 
details are not included in our ePN model. 



124 8 Communications Gateway 

As mentioned before, our CPN model only handles a single call. This is suffi­
cient, since calls do not interact with each other, except for the competition for 
resources. This competition occurs within the three Resource Management proc­
esses and within the Service Handler. In a more general model, there would be a 
Sending Call Control process, a Gateway Call Control process, and a Receiving 
Call Control process per call, while the Resource Management processes would be 
shared by all calls. In the event of two call entities requesting a scarce resource, 
the responsible resource manager will make a choice and allocate the resource to 
one entity. We model this by introducing a non-deterministic choice to determine 
the availability of the resources required to establish a call. 

Next let us consider the colour set declarations of the refined CPN model 
(shown on the next page). Now there are four different kind of interfaces, and 
each of these has its own set of states (in addition to the general interface states 
represented by Istate). The nomenclature of Sstate, Rstate, and Gstate are similar 
to the one used in Q.931, but modified to suit the gateway. Idle states are repre­
sented by SO, RO and GO. Active states are SlO, RIO, and GlO. Release states af­
ter an established call have numbers II and 12 in them. All other states are asso­
ciated with the call establishment procedures, both successful and unsuccessful. 
Pstate represents the states of the processes in Node Location, the three Resource 
Management places, and the Service Handler Interface. 

The Count colour set is the same as in our first model, and it is used in a 
similar way, i.e., for bookkeeping related to token cleaning. The Addr colour set 
represents addresses. It denotes the source and destination interface of a message. 

Sending 
Call Control 
Application 

Call Control Application 

Gateway Call Control Application 

Gstate 

Pstate 

Receiving 
Call Control 
Application 

Fig. 8.8. Most abstract CPN view of the refined Call ContralApplication 



8.2 CPN Model of Communications Gateway 125 

Finally, MIP describes all the different kinds of MIP messages. The message 
structure was defined using the ASN.11anguage, which is a standard used in tele­
communications. The messages have fields associated with them, in the same way 
as a real protocol message contains information fields. Most messages have an 
Addr field to identify the source and destination. Others have a Reply or a Result 
field. The latter identifies a source, a destination, and a Response. 

color Interface = with send 1 receive 1 gateway 1 process; 

color Istate =with idle 1 callInc 1 callPres 1 callRec 1 callDel 1 callAct; 

color Sstate = with SOlSl1S21S31S41S51S61S71S7alSlOi 
Sll1S121S141S15; 

color Rstate = with ROIROalR11R21R31R41 R51R61R6alR71 
R81R101Rl11R12; 

color Gstate = with GO 1 G11G21G31G3alG41G4alG4blG51 G5alG61 
G7IG8IG8aIG9IGlOIG11IG12IG13IG14IG15; 

color Pstate = with inactive 1 processing 1 active 1 halted; 

color Count = int with 0 . .1 0; 

color Addr = product Interface * Interface; 

color Reply = with ok 1 nok; 

color Response = with success 1 failure 1 redirect; 

color Result = product Interface * Interface * Response; 

color MIP =union CallSetup : Addr + Call Connect : Addr + 
ReleaseCall : Addr + Redirection: Addr + Alert: Addr + 
AddrCheckReq : Addr + AddrCheckResp : Result + 
Res Query : Addr + ResResp: Result + ResReleaseReq: Addr + 
Configure: Addr + ConfigResp: Result + ServRelease: Addr + 
StopServ: Addr + NetStatusEnq + NetStatus: Reply + 
NetLoadEnq + NetLoad: Reply + CRAllocate + 
CRReply : Reply + ResourceRel; 

Figure 8.9 shows the subpage for Send Primitives. It models the interaction be­
tween the Sending Interface and the Sending Call Control. The lower part is iden­
tical to Fig. 8.3 and the lower part of Fig. 8.6. However, the additional condi­
tions, imposed by the interaction with the Sending Call Control, may change the 
behaviour of the interface. It is part of the subsequent validation to investigate 
this and, if necessary, modify the behaviour of the Sending Call Control in such a 
way that the interface specification in Fig. 8.2 is met. Place One guarantees that 
only one call is made. The reason for this has already been explained. 

Figure 8.10 shows the subpage for MIP Send. It models the sending and re­
ceiving of MIP messages to and from the Gateway Call Control 10. 

When the refined gateway specification was completed, it was validated by 
means of simulation. When this was done, we wanted to compare the behaviour 



126 8 Communications Gateway 

so Sl S7 S7a S10 ifs From s SO 

idle 

[s=S6, 
iFrom 

[soSO, 
i oidle] 

[S I,S2,S3,S5,S 14] 
theo SO else S 12 

Fig. 8.9. Refined CPN page for Send Primitives 

case s of 
S3=>CallSetup(send,gateway) 

I S 12=>ReleaseCall(seod,gateway) 

CallCoonect(gateway,seod) 

[s From 
[S3,S12]] 

n 

[s From 
[S4,S7a]] 

n+1 

case s of 

S3=>S4 
I S12=>SO 

o 

0-1 

S6 

Redirectioo(gateway,seod) 

ReleaseCall(gateway,seod) 

o o 

n-I 0-1 

ifs From 
[SO,S12] 
theo SO 

S4 S7 else Sl1 S4 S5 

Fig. 8.10. Refined CPN page for MIP Send 

o 

n-1 

[s From 
[S5,SI1], 
i oidle] 

idle 

IT§] 
Clean 

Q Count 



8.2 CPN Model of Communications Gateway 127 

of the refined specification with the original specification. The two CPN models 
of the gateway are at different levels of abstraction. However, the interfaces to 
the Call ContralApplication are common, and hence we can compare the lan­
guages which the interface primitives determine. 

To perform the language comparison, we used three different tools. The oc­
currence graphs were constructed in the CPN tools. Then they were transferred 
to the Protean tool [7], in which they were reduced by ignoring the cleaning 
transitions. Finally, the reduced occurrence graphs were moved to the Ara tool 
[53], which is capable of making an automatic comparison of the languages. In 
this way it was shown, after a number of iterations, that the refined specification 
has the same language as the original specification. 

One reason for using language comparison is that it suits the "black box" ap­
proach taken by the gateway designers. Moreover, the necessary tools were 
available. Language equivalence does not preserve deadlock properties. How­
ever, this is not a big problem, since deadlocks can be easily found and removed 
by means of the occurrence graph queries in the CPN tools. 

8.3 Conclusions for Communications Gateway Project 

The use of CP-nets and the CPN tools within the specification stage of the gate­
way has been successful. The fact that the first attempts to refine the specification 
did not meet the original gateway specification shows how easy it is to make 
mistakes when specifying the behaviour of systems. 

The readability of our specifications is up to the individual to decide, but as 
long as efforts are made to present the CP-nets in a simple and readable form, 
the CPN language should be able to gain wide acceptance. 

It would be useful to implement language reduction/comparison algorithms 
directly in the CPN tools. This would remove the necessity of shifting between 
different tools and hence decrease the turnaround time. However, we will proba­
bly always have a variety of tools, offering different kinds of analytic capabili­
ties. Hence, it would also be useful to develop a standard transfer format for 
CP-nets and for occurrence graphs. 

During the course of modelling, many different modelling options were ex­
plored ranging from representing primitives as tokens to having more complex 
MIP message structures. The models that were eventually obtained are the result 
of many hours of trial and error to produce a readable and understandable speci­
fication. At the end, we decided to represent as much of the behaviour as possible 
in the net structure, and this meant that we use only a limited number of ML 
functions, which are all quite simple. 

After several iterations of editing, simulation, and occurrence graph analysis, 
the two CPN models were proven to have the same languages, i.e., the same se­
quences of interface primitives. During this work, we removed many minor er­
rors and we also located three more fundamental modelling errors. 



128 8 Communications Gateway 

The first modelling error was caused by an inconsistency between the original 
specification and the refined specification. In the original specification, the serv­
ice handler is issued configuration primitives before the receiving interface is in­
formed of an impending call setup. In contrast to this, the first versions of the 
refined specification informed the receiving interface before configuring the 
service handler. This inconsistency was due to the fact that in the early design 
stages the preferred option was not known. Both approaches successfully estab­
lish a connection between the involved interfaces, and the difference was not 
found until the systematic language comparison was performed. 

The second modelling error was of a similar kind. It was caused by having 
different release procedures in the two models. Call release is the most complex 
part of providing the gateway service, because it can be requested in any state 
(even while a release process is in progress). In this part of the model we found 
several errors. One example is that the sending interface was released without 
releasing the receiving interface. Another is that the node location process was 
left active after the call release. One complicated issue was the arresting of a call 
setup that propagates through the gateway while a release primitive occurs at the 
sending interface. To achieve this, call release procedures had to inform all in­
terfaces of a release, even if they had not been set up as yet. This disabled the re­
ceiving interface so that no further call setup actions could occur. 

The third modelling error was more subtle. When the original specification 
was created, the main aim was to produce a simple service specification that met 
the requirements. At first glance, the model seemed to operate correctly. How­
ever, when the refined specification was completed and the language comparison 
began, it became apparent that there was no way that the refined model could be 
built to meet the original specification. The modelling processes were blamed at 
first, but the real reason soon appeared. In the original specification, the Call 
ContralApplication was directly connected to all interfaces. This allows state 
changes at one interface to be instantly observed at the other interfaces. How­
ever, in the refined model, the Gateway Call Control Application is isolated from 
the Sending Interface by the Sending Call Control Application and from the 
Receiving Interface by the Receiving Call Control Application. Hence instant in­
formation sharing is no longer possible and this implies that the original specifi­
cation cannot be met. To remedy the problem a new transition was added to the 
Receiving Interface of the original service specification. It represents a call re­
jection within the Call Contral Application independent of all interfaces. 

The errors described above are unlikely to have been found without a system­
atic verification. We located a number of errors in the refined specification, but 
sometimes it also turned out that the original specification had to be modified. 
The errors were not due to the use of CP-nets, but are inherent to the develop­
ment methodology that we applied. It is hard to know the implications of deci­
sions made at early stages of the design process, but nevertheless it is necessary 
to delay many kinds of implementation decisions as long as possible. The best 
way to solve this type of problem is to integrate the validation process with the 
design process. In this way it is possible to validate the most basic parts of a de-



8.3 Conclusions for Communications Gateway Project 129 

sign before too much complexity is added. Errors can be removed and valuable 
insight is gained - to be used in the remaining part of the design. When a refined 
specification has been proven to meet the original specification, additions can be 
made to the refined specification. In this way, the design and specification proc­
ess proceeds iteratively, yielding a sequence of more and more detailed specifi­
cations. We may add new processes, for example, and then check whether they 
interfere with the basic call setup and clearing functions. 



Chapter 9 

BRI Protocol in ISDN Networks 

This chapter describes a project accomplished by Peter Huber and Valerio O. 
Pinci, Meta Software Corporation, Cambridge MA, USA, in cooperation with a 
large telecommunications company. The chapter is based upon the material pre­
sented in [32]. A brief presentation of the project can be found in Sect. 7.1 of 
Vol. 1. The project was conducted in 1990. 

With a large telephone company an experiment was made to point out how 
current work practices in the development of protocol software may be im­
proved. By means of eP-nets and the ePN tools, we built a formal, executable 
specification of a standard network protocol, which substituted for a less formal 
approach using SDL diagrams (augmented by extensive, informal textual de­
scriptions). 

The protocol considered defines the procedures required for establishing, 
maintaining, and clearing phone connections at the Integrated Services Digital 
Network (ISDN) Basic Rate Interface (BRI). We discuss aspects of the modelling 
process and present the applied strategies for constructing and testing the actual 
ePN model. We also sketch how the ePN model was extended to handle the sup­
plementary hold service modelled in Chap. 6. 

The project shows that the current work practices in the telecommunications 
area may be improved by building graphical, directly executable ePN models, 
which can be validated by means of simulation and verified by means of occur­
rence graphs. The final ePN model was presented to engineers at the participat­
ing telecommunications company. This was done by making manual simulations 
of typical occurrence sequences followed by automatic simulations with animated 
application-oriented graphical feedback. According to the engineers, who all had 
wide experience with modelling and analysis of telephone systems, the ePN 
model provided the most detailed executable model they had seen for this kind of 
protocol. 

Section 9.1 contains an introduction to the BRI protocol. We also describe the 
basics of the SDL language which is widely used in the telecommunications area. 
Section 9.2 presents the ePN model of the BRI protocol. Finally, Sect. 9.3 pres­
ents a number of findings and conclusions for the project. 



132 9 BRI Protocol in ISDN Networks 

9.1 Introduction to BRI Protocol 

In these years there is a large amount of interest in the ISDN area. Most tele­
communication equipment manufacturers are designing and implementing prod­
ucts for use at the so-called user-endpoints. Such products must comply with the 
standard put forward in the specific ISDN protocols. In an ever-more competi­
tive market, it has become important to use new, efficient approaches for the de­
sign, development, and production of new, high-quality, sophisticated telephone 
products. Hence there is great interest in ways of reducing the turnaround time 
for new products, e.g., by improving the design methods. 

The telecommunications company with which we undertook this project was 
in particular interested in new methods to define, simulate, and verify system 
features during the traditional requirement and specifications development 
phases. The aim of the project was to make, in a short time frame, a feasibility 
study to test and demonstrate how to develop and simulate a model of an ISDN 
protocol using CP-nets. 

Together with the telecommunications company we singled out a reasonable 
subset of the ISDN protocol: the basic voice services of the Basic Rate Inter­
face (BRI). The BRI protocol deals with the user/network interface for estab­
lishing, maintaining, and clearing voice connections (i.e., regular telephone 
calls). Other ISDN protocols deal with data connections. Although the basic 

Originating Originating 
Switch 

Terminating Terminating 
User Network Network User 

~ 
Origination 

~ * Connect 
@ Dial Tone <J 
Dial 

Digits 

* Stop 
Translate 

Dial Dial Tone <J 
Rest Digits 

* Route and 
Alert t>Ring 

Destination ~ 
Attach 

~ Ringback 

Ringback <J I @ 

V 
Answer 

Stop 
Alerting 

Stop 
Stop I t>Ring 
Ringback <J 

Make 
Connections 

<J I t> Talk Talk 

Fig. 9.1. Typical message sequence for a call set-up 



9.1 Introduction to BRI Protocol 133 

voice protocol in itself seemed fairly extensive, it was pointed out to us - by the 
practitioners - that the protocol is rather elementary and would not necessarily 
give a full proof of our case. However, it gave us a sufficiently complex specifi­
cation to start with. Later, we also modelled the hold service, i.e., the facilities 
for putting a call on hold. It is one of the supplementary services considered in 
Chap. 6. 

The chosen protocol supports the procedures for establishing regular tele­
phone connections. Figure 9.l depicts, in a deliberately fuzzy way, a typical mes­
sage sequence for a call set-up. The ISDN BRI specification governs only the 
message exchange between one telephone (user) and its network at the network 
layer. Hence for the depicted scenario, the protocol is applied in two locations: 
(a) between the originating phone and its network and (b) between the terminat­
ing phone and its network. In particular the protocol does not cover the switch­
ing network between the originating and terminating sides. 

As basis for our modelling work, we were given the existing specification [2]. 
It is made by means of SDL (Specification and Definition Language) [16], which 
is widely used in the telecommunications area. The specification has two parts. 
The first part contains a number of SDL diagrams and their supplementary text. 
The second part describes the data contents of protocol messages. 

The set of SDL diagrams focuses on the procedures in the telephone switching 
system for the logical call processing control flow and related actions. We were 
given 16 SDL diagrams for the user side (originating and terminating side com­
bined) and 12 SDL diagrams for the network side (originating and terminating 
side combined). Figures 9.2 and 9.3 show two typical SDL diagrams. The small 
typographical differences are not intentional but probably due to different 
authors. Below we explain each of the SDL diagrams in detail together with the 
necessary SDL terminology. For a more detailed description of SDL see [16]. 

The SDL page in Fig. 9.2 represents a functional block, a state-machine-like 
submodel, of the user side process. A submodel consists of SDL states and 
SDL transitions. The top node of Fig. 9.2 represents a state (inscribed with its 

STATUS) 

(3 
Fig. 9.2. Typical SDL page for the user side 



134 9 BRI Protocol in ISDN Networks 

number and name), whereas the seven nodes in the second row are SDL transi­
tions. A process in a given state waits for a trigger for one of the SDL transi­
tions. The processes in an SDL model communicate through infinite FIFO 
queues: each process has its own queue of incoming messages not yet processed. 
The messages are often referred to as signals, and their kind is distinguished by 
an abbreviated, capitalised name. The name of the signal recognised by a given 
SDL transition is written inside the node. Such an SDL transition node is often 
referred to as an input symbol. In Fig. 9.2, the leftmost input symbol (with the 
double vertical lines) indicates handling of an internal request signal from the 
user, i.e., from the next layer in the user protocol. The shape of the six right­
most input symbols indicate handling of messages from the network side. 

Below each input symbol there is a vertical string of SDL symbols. It con­
tains a number of SDL transitions and ends with an SDL state. The transitions 
represent actions which will be executed when the first message in the queue 
matches the input symbol in question. When such a match occurs, the signal is 
removed from the queue, the actions are executed, and the process changes to the 
state represented by the SDL state at the end of the string. In a string, several 
different symbols may be used. The shape of SDL symbols are summarised in 
Fig. 9.4. 

In Fig. 9.2, the leftmost vertical string tells us that upon receipt of a Clear 
Request signal from the user side, the process will send a Disconnect message to 
the network side - represented by an output symbol. The process will change 

SENDPROG 
WITH SIG = AUD. 

RING AND 
RETAINED CALLS TO 

CALLING USER 

o 
NULL 

Fig. 9.3. Typical SDL page for the network side 

SEND PROGTO 
CALLING USER 

WITH SIG = AUD. 
RING AND IN· BAND 

AUDIBLE RING 



9.1 Introduction to BRI Protocol 135 

from state 8 to state 11. Like input symbols, output symbols carry the signal 
name inside them. The second vertical string shows that upon receipt of a Con­
nect Acknowledgement signal, from the network side, a specified action is per­
formed and the process changes to state 10. The rectangular action symbol 
contain a short text describing the action. A typical action is to calculate pa­
rameters for output signals or to control B-channels and call references. Both of 
these are used to identify a call between a network and a user. 

It is an established practice to organise SDL diagrams with a state node at the 
top and all possible state changes fanning out below it. The diagram in Fig. 9.2 
has to the very right an input symbol indicating that the result of any other signal 
from the network side is left open for the implementation. Normally SDL dia­
grams use the convention that signals not modelled explicitly are simply con­
sumed without causing a state change. For our pilot project, we have not de­
scribed such signals at all, but they could easily have been modelled as well. The 
diamond-shaped node is an if-then-else decision symbol. 

The SDL diagram in Fig. 9.3 represents the actions that can take place when 
the network side is in state 6. The network-side diagram is very similar to the 
user-side diagram discussed above. The input and output symbols are the 
"complements" of the user-side symbols - indicating that this is the other end of 
the interface. Again, the symbols with double bars indicate internal signals. 

The leftmost string in Fig. 9.3 is triggered by a Call Proceeding signal from 
the user side. This results in stopping timer T303, starting timer T31O, and 
changing from state 6 to state 9. The rightmost string waits for the internal ac­
tion indicating a time-out of timer TJ03. If it is the first time-out, a Set-up mes­
sage is sent to the user side, timer T303 is started, an internal request PROG is 
sent to the user, and state 6 is entered. If it is the second time-out, an internal ac­
tion is performed, an internal request PROG is sent to the user, and state 0 is 
entered. The two small circles, D and E, indicate off-page connections. This con-

General symbols User side symbols Network side symbols 

LJ C CJ 
Process action Message from network side Mesage to user side 

CJ 0 D 
State Message to network side Message from user side 

<> LJ C 
Decision Internal request from user Internal request from network 

I time-out report 

0 CJ D Off-page connector 
Internal request to user Internal request to network 

Fig. 9.4. SDL symbols (from [16]) 



136 9 BRI Protocol in ISDN Networks 

struct is mainly used due to space limitations and does not imply the existence of 
a well-defined submodel concept as such. 

Together with the SDL diagrams, [2] contains 25 pages of prose, which de­
scribe what is already represented in the SDL diagrams together with more de­
tailed explanation and listing of special cases and exceptions. As examples of 
supplementary or redundant text, we have descriptions like: "The user initiates 
call establishment by transferring a Setup message across the user-network inter­
face" or "If the channel the user has requested is appropriate and available, the 
network shall send the user a Call Proceeding message with that channel identifi­
cation specified exclusive". The second part of [2] describes the bit contents of 
message data fields (25 pages) and holds a listing of the data contents of the indi­
vidual messages exchanged between the user side and the network side (40 
pages). 

We also received the specification of four supplementary voice services [3], 
including the hold service. This material was in the same form as for the basic 
voice services discussed above (12 SDL diagrams for the user side and 20 pages 
of supplementary text). 

9.2 ePN Model of BRI Protocol 

The CPN model of the ISDN BRI specification was built and debugged in only 
16 days. This includes meetings with people from the telephone company. The 
work was done by a CPN expert - who was a novice in the telecommunication 
domain. The supplementary hold service was modelled in one extra day. As we 
shall see below, the CPN model is fairly extensive, with 43 pages organised in 
four hierarchical levels. 

The graphical layout of the CPN model was done in such a way that there is a 
direct graphical correspondence between the SDL specification and the CPN 
model. Each SDL page was represented by a CPN page. Each SDL state node 
was mapped into a CPN place while each vertical string of the SDL diagram was 
mapped into a single CPN transition followed by a CPN place representing the 
new state. Instead, we could have represented a string as a sequence of CPN 
places and transitions, but we preferred the more compact representation. To 
make the CPN model more readable for SDL people, each CPN transition were 
given the same shape as the input symbol of the corresponding SDL string. The 
strategy of mapping one string into one CPN transition cannot be taken if the or­
der of several inputs and outputs is important. For this reason, one of the SDL 
strings on the network side had to be modelled by two CPN transitions with an 
intermediate CPN place. When this was discussed with the implementers, we 
learnt that this "two-stage" behaviour only had been realised during the imple­
mentation. There it was handled by introducing new substates - but the SDL 
specification was never updated. 

Figure 9.5 shows the CPN page corresponding to the user-side SDL diagram 
in Fig. 9.2. The six CPN transitions can easily be identified with the corre­
sponding strings of the SDL diagram. Notice how the shape of the CPN transi-



9.2 ePN Model of BRI Protocol 137 

tions matches the SDL input signals. The rightmost input symbol from Fig. 9.2 
has been left out, since it was also left unspecified in [2]. The user state places 
have been given the number of the state prefixed by "U", e.g., US. The archi­
tecture of the system has been represented directly by means of three port places. 
The first of these, InternalUserReq, represents internal user messages while the 
two others, NetworkToUser and UserToNetwork, represents messages from the 
network to the user and vice versa. In this way we achieved an explicit repre­
sentation of the message exchange in the system. All arcs surrounding US have 
identical arc expressions. Hence only one of these is shown. A similar convention 
is used for the arcs surrounding NetworkToUser (and in Figs. 9.6 and 9.15). 

Figure 9.6 shows the CPN page corresponding to the network side SDL dia­
gram in Fig. 9.3. This page has similar characteristics as the CPN page in Fig. 
9.5. Network state places are named with the state number prefixed by "N". Be­
sides NetworkToUser and UserToNetwork, we have now two other port places 
called NetFromNet and NetToNet. Additional CPN places represent data local to 
the network side: the state of timers T303 and T310 and the state of the B­
channels, NBC. The latter are administered by the network side. The two off­
page connectors in Fig. 9.4 are modelled by the two substitution transitions ''D'' 
and "E". The subpages of these substitution transitions are the CPN pages that 
correspond to the SDL diagrams to which D and E lead. 

As indicated by Figs. 9.5 and 9.6, each user/network page has a set of places 
that represent user/network states. The fusion set construct came in handy to 
"glue together" all places representing a given state. In this way, we ended up 
with 12 global fusion sets for the user states and 12 for the network states. 

(u,(mt=DISC, 
cr=cref, 
ai=nulIJ) 

Message 

(u,m) 

(U, (mt=STATUS, 
cr:::cret, 
ai=Status 8J) 

'--~~~---+~~~---H,>( UserToNetworkXl--L-~-1~-I--~~~~~---" 

(u,cref,b) (u,O,none) 

ctb 
(u,cref,b) 

~ 
(u,cref,b) 

Fig. 9.5. ePN page corresponding to SDL diagram in Fig. 9.2 

Message 



138 9 BRI Protocol in ISDN Networks 

Analogously, global fusion sets were used to unify places representing timers and 
the state of B-channels. 

For this model, we have hidden the fusion tags and adapted the simple con­
vention that places with the same name are either in a fusion set or related as 
ports and sockets. The latter case can be distinguished from the former by the 
fact that ports always have either an In, an Out, or an 110 tag. We have also hid­
den the HS tags used to identify substitution transitions. Instead we have shown 
substitution transitions with a thicker border line. The relationship between sub­
stitution transitions and subpages can be seen from the names of the substitution 
transitions and from the page hierarchy in Fig. 9.16. 

Figure 9.7 shows the most abstract view of the CPN model. It tells us that the 
system consists of a Users side and a Networks side connected via two communi­
cation channels UserToNetwork and NetworkToUser. At this abstract level only 
the very essence of the BRI protocol is captured: the exchange of messages be­
tween users and networks. The arcs of Fig. 9.7 do not carry any inscriptions, but 
due to the port assignments, tokens representing messages will appear on the 
places UserToNetwork and NetworkToUser during simulations - when transi­
tions occur in the subpages of Users and Networks. 

Message ~ 

1310 

NTimer 

UserloNetwOrky:(u",.m,,--) ~-----,r-f--t-t--'\---".-'''' 

(n,u,cre! 

(n,u,cret, (n,no,O, 
b,nnr) none,O) 

b,nnr) ai=nnull), 
nnr) 

r-------{ NetFromNet 

cr=cref, 
ai=null)) 

(n,(mt 
N_PROG, 
ai=nnull), 

nnr) 

NlntReq 

(n,{mt=N]ROG, 
ai;nnuII},nnr) 
'---'----'-----"----t-->-~ NetloNet *,~--+-----' 

~ Message N7 
NetState 

(n,u,cref,b,nnr) 

Fig. 9.6. CPN page corresponding to SDL diagram in Fig. 9.3 



9.2 ePN Model of BRI Protocol 139 

The subpage for the Users transition is shown in Fig. 9.8. The page provides 
an overview of the user side and interconnects the CPN pages for the individual 
user states. The SDL specification did not contain any overview diagrams like 
Figs. 9.7 and 9.8. The substitution transition U8 in Fig. 9.8 has the CPN page in 
Fig. 9.5 as subpage. The subpage shows all the possible state changes that can 
happen from user state 8. Analogously, each of the other 11 substitution transi­
tions in Fig. 9.8 has a subpage that describes the actions that can take place in the 
corresponding user state. These pages have a structure that is very similar to Fig. 
9.5, but the details are of course slightly different. The substitution transition 
UREQ in the upper left comer of Fig. 9.8 will be discussed later. 

In Fig. 9.9 we have listed some of the colour sets declared for the user side of 
the model. Although the protocol only deals with one user and one network, we 
declare a set of Users containing six different telephones. The purpose will be­
come clear when we discuss the modelling of the environment. Call References 
are used to identify the individual connections. The highest bit tells whether the 

Users Networks 

Fig. 9.7. Most abstract ePN view of BRI protocol 

~---;~~~--;T--r-~-~---;~~~--;T--r-,(NetworkToUser 

Message 

~ Message 

Fig. 9.8. User side overview page 



140 9 BRI Protocol in ISDN Networks 

call originates from the user side or from the network side. B-channels are the 
physical channels on which the connections are established. They carry the names 
hI and h2. The state of a user is described by a triple which identifies the User, 
Call Reference, and B-channel. 

The colour set Message Type enumerates the kind of messages exchanged 
between the user and network. The two next colour sets declare the data contents 
for Status and Setup messages, respectively. The union colour set MData speci­
fies - like a variant record in programming languages - the tags and corre­
sponding types for the data part of the different kinds of messages. For example, 
if the tag is Setup, the data contents is of type Setupdata. The majority of mes­
sages uses the MData colour null to indicate that they carry no additional data. 

We declare a Message Record to consists of three labelled fields containing a 
Call Reference, a Message Type, and an MData value, respectively. Finally, we 
declare a Message to be a pair where the first component is a User while the sec­
ond is a Message Record. 

With these colour set declarations in mind, it becomes rather straightforward 
to interpret the behaviour of the individual CPN transitions. To illustrate this, 
we take a look at the three rightmost transitions in Fig. 9.5. During our discus­
sion it may help to review the corresponding SDL diagram in Fig. 9.2. The 
fourth transition of Fig. 9.5 is executed when a RELease message is received 
from the network. The execution produces a RELease COMpleted message to the 

color User = with ull I u12 I u21 I u22 I u31 I u32 I no; 
color CallRef = int with 0 .. 255; (* 1..127 for user *) 

(* 128 .. 255 for net *) 
color BChanName = with bl I b2 I none; 
color UserState = product User * CallRef * BChanName; 
color MessageType = with ALERT I CALL_PROC I CONN I CONN_ACK I 

DISC I INFO I PROG I REL I REL_COM I SETUP I 
SETUP_ACK I STATUS I STATUS_ENQ; 

color Status data = int; 
color Setupdata = product BChanName * User; 
color MData = union Status: Statusdata + 

Callproc : BChanName + 
Setup: Setupdata + 
Setupack: BChanName + 
null; 

color MessageRec = record cr: CallRef * 
mt: MessageType * 
ai:MData; 

color Message = product User * MessageRec; 
var u:User; varb:BChanName; 
var cref: CallRef; var m: MessageRec; 

Fig. 9.9. Excerpts of the user-side CPN declarations 



9.2 ePN Model of BRI Protocol 141 

network and the state of the user process changes from UB to ua. The guard in­
side the transition checks the Message Type and also checks that the Call Refer­
ence of the incoming message matches the one in the incoming user state token 
(the #mt and #cr operators extract the mt-field and the cr-field of the message 
record m, respectively). From the thick output arc we can see that the process 
releases its attachment to a Call Reference and a B-channel. The next transition 
shows a state change from UB to ua upon receipt of a RELease COMpleted mes­
sage from the network. As before, the Call Reference and the B-channel are re­
leased. The rightmost transition describes the handling of a STATUS ENQuiry 
message from the network. This does not lead to any state change. The only ac­
tion is to produce a Status message to the network telling that the present user 
state is UB (by means of the ai-field). 

We did not model the FIFO nature of the message queues. However, this is 
easily done. A straightforward solution is to change the colour set Message to be 
a product of a User and a list of Message Records. 

Figure 9.10 shows some of the colour set declarations for the network side. 
They are analogous to those of the user side. First we declare three networks. 
The next colour sets specify non-counting and counting timers (NTimer and 
NTimerCount) and B-channel states (BChanState and BChan). For modelling the 
inter-network communication we have declared identifiers (NetNetRej). The use 
of these identifiers will be explained below. Similar to the UserState, NetState 
keeps track of the network state. This is done by means of a 5-tuple. Finally, the 
last four colour sets describe the inter-network messages. This is done in a way 
similar to the messages in Fig. 9.9. 

color Net = with n1 I n2 I n3; 
color NTimer = product Net * CallRef; 
color Count = with first I second; 
color NTimerCount = product Net * CallRef * Count; 
color BChanState = with free I reserv I in_use; 
color BChan = product Net * BChanName * 

Call Ref * BChanState; 
color NetNetRef = int; 
color NetState = product Net * User * CallRef * 

NetNetRef * BChanName; 
color NIntReqType = with N_SETUP I N_CONN I N_CONN_ACK I 

N_DISC I N]ROG IN_ALERT; 
I color NIRData = union NSetup:User + nnull; 
I color NIntReqRec = record mt: NIntReqType * ai: NIRData; 
color NIntReq = product Net * NlntReqRec * NetNetRef; 

var n,nrec,nsend: Net; var nm: NetNetRef; 
var nm : NlntReqRec; 

Fig. 9.10. Excerpts of the network-side ePN declarations 



142 9 BRI Protocol in ISDN Networks 

As examples, let us now study the two outennost transitions in Fig. 9.6. As 
before, it may also be helpful to review the corresponding SDL diagram, i.e., 
Fig. 9.3. The leftmost transition awaits a CALL PROCeeding message from the 
user side. When such a message is received the timer T303 is stopped (regardless 
of the value of count). The timer T310 is started and the network state changes 
from N6 to N9. The rightmost transition models a time-out. It waits for a T303 
timer token with value second (indicating that it is the second time-out of the 
timer). When such a token is available the transition occurs. The corresponding 
B-channel is a released, a message is sent to the other network, and the network 
state changes to NO. 

The modelled protocol part only specifies the interface between a single user 
and a single network. However, we added mock-ups of the environment to 
achieve a simulation scenario in which several users and networks could partici­
pate - as already provided for in the colour set declarations of Figs. 9.9 and 
9.10. Two extra pages were added to the diagram: a subnet for generation of 
user requests (Fig. 9.11) and a subnet for inter-network routing (Fig. 9.12). 
These subnets provide a simple model of the environment in which the protocol 
works. 

The three transitions in Fig. 9.11 all work in a similar way. Each of them 
generates tokens representing request from the upper layer in the user protocol. 
The transitions do not have any input places or guards. Hence there is no restric­
tion on the binding of the variables u, cref, and called. Additional places could 
have been added to elaborate the functioning of this page. 

In an interactive simulation, the three transitions can be executed whenever a 
certain request is needed. The values of the variables are bound either manually 
or by means of a random number generator. However, for testing and automatic 
simulation, we wanted to control these transitions so that a reasonable number of 
requests are generated. Hence, we added code segments to control the token gen­
eration on this page, based on input files. With the file approach it was easy to 
force the simulation into certain calling patterns of particular interest. An alter­
native to the files would be to have places with lists of the desired requests. 

In order to give a simple model of the inter-network communication, we have 
declared a set of special identifiers NetNetRefin Fig. 9.10. When a call is initi­
ated, at the originating network, two tokens are added to the fusion place NNR in 

(u,{mt=CONN_REO, 
ai=Conreq called)) 

(u,{mt=CONN_REO, (u,{mt=CLEAR_REO, 
,----P-I-CK-_-U-P---, ai=Caliref cref)) ai=Caliref cref}) 'r-E-R-M-IN-A-r-E-' 

(u,cref) IntUserReq (u,cref) 
UlntReq 

Fig. 9.11. ePN page for generation of user requests 



9.2 ePN Model of BRI Protocol 143 

Fig. 9.12. The two tokens represent the inter-network link. As an example, if 
u32 is calling ul2, then a new NetNetReference is generated, say 77, and two to­
kens with colours (n3,77,nl) and (nl,77,n3) are put in NNR. During the simula­
tion, the originating network will put messages for the terminating network in 
the place NetToNet. This will enable the Routing transition, which will move the 
message from place NetToNet to place NetFromNet and change the first compo­
nent from nsend to nrec (based on the information in NNR). The communication 
in the other direction is supported in a similar way using the other token in 
NNR. 

With the constructed ePN model, we made a series of simulation runs. Input 
data was read from files and the progress of the simulation was observed by 
watching the token flow and the occurring transitions. As part of the project we 
also experimented with customised animation. By means of a few rather simple 
code segments we constructed a simple graphic display of the calling states for 
the six telephones and the three networks. A snapshot from a simulation run is 
shown in Fig. 9.13. The snapshot shows that ull has established a local call to 
ul2 (thick arrow), u22 is trying to call ull but is receiving a busy signal, while 
u32 is in the process of making a connection to u2l. 

This kind of animation can now be obtained by the animation utility described 
in Sect. 1.3. However, that utility did not exist when our project took place, and 
hence we needed to do some amount of ML coding. It is straightforward to aug­
ment the display to show more technical details like B-channels and call refer­
ences in use, the state and length of communication queues, and state of timers. 
Such additions should be designed together with the protocol experts - reflecting 
their understanding of the simulation model. 

During the modelling process it was important for us to apply certain struc­
tured model building and testing strategies, similar to structured programming 
and testing techniques. We want to highlight the following points about our mod­
elling. They made it possible to finish the rather large model in approximately 
two weeks. 

(nsend,nm,nnr) 

(nsend,nnr,nrec) 
NNR 

Layer2 

(nrec,nm,nnr) 

Fig. 9.12. ePN page for network-to-network communication 



144 9 BRI Protocol in ISDN Networks 

• The whole user side was laid out and equipped with textual inscriptions before 
the network side was modelled. For intermediate simulation a one-page mock­
up of the network side was made, to respond to user messages for the basic, 
normal case message pattern. 

• The first version of the user side only handled a small set of messages types, 
and messages were sent with no data contents. Based on that experience the 
colour sets were elaborated and finalised. 

• When the first user page had reached a graphically pleasing state, it was easy 
to copy the graphics to get a skeleton for the other user pages. 

• Even with the full model developed it was still fruitful to be able to test sub­
models without having to isolate these in a separate model. This was done us­
ing the simulator facilities described in selection of subdiagrams in Sect. 6.2 of 
Vol. 1. 

• For a given call several behavioural patterns exist. In order to test, in a struc­
tured way, we added enabling places to some of the transitions. As an example, 
the place right above the transition named FirstTimeOut T303 (in Fig. 9.6) 
was used, during simulation, to enable/disable the possibility for time-out by 
adding/removing an e-token on the fly. 

As mentioned at the end of Sect. 9.1, we also received material covering the sup­
plementary hold service [3]. Protocol engineers consider this part to be consid­
erably more challenging than the basic BRI protocol. 

A call can be put on hold when it is in one of three user states: U3, U4, or 
U 10. The hold state machine has four states, which are substates of the three 
regular user states. The SDL specification of the hold service contains 12 = 3 * 4 
additional user side SDL diagrams together with a significant amount of text. 
The diagrams for the network side were not given, but for this project we im-

Network: n1 

Network: n2 

~ 
~ 

Network: n3 

Fig. 9.13. Simple animation updated by transition code segments 



9.2 ePN Model of BRI Protocol 145 

plemented CPN transitions, which mirrored the functionality of the user side. 
The 12 SDL diagrams may not seem too bad, but remember that the hold service 
is just one of several supplementary services (e.g., call forwarding and confer­
ence call). This means that the SDL description of the full BRI protocol becomes 
rather large and hence harder and harder to work with. 

We took the modelling of the hold service as a challenge. We could have 
made a straightforward mapping of the SDL diagrams into the same number of 
CPN pages. Instead we wanted to investigate how compactly it could be done 
using the abstraction mechanisms of CP-nets. 

As shown in Fig. 9.14, we augmented the declarations slightly. A colour set 
for the hold sub states was declared (Substate), and the UserState tuple (from Fig. 
9.9) was given a fourth element to record the hold substate. Six additional mes­
sage types were added to Message Type (from Fig. 9.9). In our CPN model all 

color Substate = with ZERO I (* no substate *) 
H30 I (* hold requested *) 
H33 I (* reconnect requested *) 
H36; (* call on hold *) 

color UserState = product ...... * Substate; 
color MessageType = with ...... HOLD I HOLD_ACK I HOLD_REJ I 

RECONN I RECONN_ACK I RECONN_REJ; 
var ss : Substate; 

'----_._--------------- --- --------------------

Fig. 9.14. Augmented user side declarations to handle the hold service 

UlntReq 

C';l·~ 
(u,(mt=RECONN_REO, 
ai=Caliref cref)) 

(u. (mt= 
HOLD_REO, 

ai=Caliref Cjr~::cref' ~~~~~~' 
b,ZERO) 

(u,{mt=HOLD, 
cr==cref, 
ai=nulI)) 

(u,{mt=CONN, 
cr=cref, 
ai=null)) 

'------"-------.(:ui .. rTONe~ 
-. --- -- Message 

Fig. 9.15, ePN page to handle the hold substates on the user side 

Message 



146 9 BRI Protocol in ISDN Networks 

arc expressions for arcs to or from UserState places were changed from 
( ... , ... , ... ) to ( ... , ... , ... , ss). This indicates that the signal handling of the basic 
BRI protocol does not change the hold substate component of the state token. Fi­
nally, two new message types for internal users request were added (not shown). 

All the substate handling on the user side was put on a single new CPN page, 
shown in Fig. 9.15. The two first transitions handle the two new internal user 
requests and send corresponding messages to the network. Note that the user 
process remains in state Vi, but the substate value is changed to H30 and H33, re­
spectively. The names for the hold sub states are taken from [3]. Their intuitive 
interpretation is given in the comment following the declaration of Substate in 
Fig. 9.14. The four last transitions wait for hold related messages from the net­
work and change the substate value accordingly. 

The page hierarchy for the final CPN model is shown in Fig. 9.16. The new 
page, UBold#45, was included in the existing CPN model, by making the page a 
subpage of each of the three pages describing a user state in which a call on hold 
can be activated (i.e., the pages Outgoing#15, CalUJel#16, and Active#7). The 
port place Ui was related to the socket places U3, U4, and UlD, respectively. The 
changes at the network side were very similar and again it was sufficient to add a 
single page, NBold#44. 

By reviewing the other supplementary services described in [3], we recog­
nised that all of them can be modelled in a similar, compact fashion. The model­
ling of the hold service highlights the value of reusable modules. Such a standard 

Networks 

Fig. 9.16. Page hierarchy for BRI protocol 



9.2 ePN Model of BRI Protocol 147 

abstraction construct was not used in the SDL diagrams. We chose to consider 
the four hold states as sub states of the ordinary user states. Hence, we repre­
sented the substates by a component of the User colour set instead of using new 
state places. 

Inspired by the use of reusable modules for the hold service, we reviewed the 
entire BRI model to see whether there were other parts in which we could reuse 
common subnets. We now observed that several of the signals are handled ex­
actly the same way in many different user states. For instance, the transition 
modelling the RELease signal in Fig. 9.5 has counterparts with identical inscrip­
tions at most of the other user pages. Hence, we turned all of these transitions 
into substitution transitions (and removed their arc expressions and guards). All 
the RELease transitions use the same subpage which contains a single transition 
(identical to the RELease transition in Fig. 9.4). This change made it explicit that 
all these user states handle the release operation in the same way. Moreover, it 
becomes much easier to maintain the description of the release operation, since 
only one page has to be updated when changes are made. A similar modification 
was made for four other signals on the user side. This gives us the five pages 
U_Prog#41 ... U_ReLCo#40 next to the large bracket in Fig. 9.16. The bracket 
indicates that the five pages are subpages of most of the pages in Null#3 ... 
Release# 17. 

On the network side, the subpages for the D and E substitution transitions (in 
Fig. 9.6) could be reused in a well defined way on other state pages (see 
N_D_Part#31 and N_KPart#27 in Fig. 9.16). Again, this way of structuring the 
model was not employed in the SDL diagrams we were given. 

The page Connect#12 was shown in Fig. 9.5, Ca1LPre#38 in Fig. 9.6, ISDN#l 
in Fig. 9.7, User]op#2 in Fig. 9.8, Ureq_Gen#39 in Fig. 9.11, Routing#24 in 
Fig. 9.12, and UBold#45 in Fig. 9.15. 

9.3 Conclusions for BRI Protocol Project 

In this section, we compare the original SDL based specification from [2] and [3] 
with the CPN model. We also briefly discuss how the use of SDL and CPN may 
be integrated. Note that our discussion is based upon the concrete SDL specifica­
tion that we received in 1990. Since then SDL has been improved in several dif­
ferent ways. This means that some of the shortcomings mentioned below no 
longer exist. 

• The CPN model is directly executable and it is possible to instrument it and 
supply simulation data in a flexible way. It is not necessary to convert the CPN 
model to any other representation in order to simulate it. 

• The use of hierarchies in CPN is much more elaborate than in the SDL speci­
fication. It seemed that the SDL designers primarily had used new pages when 
there was no more room on a page. In CP-nets there are major accomplish­
ments obtained through a consistent use of hierarchies: 



148 9 BRI Protocol in ISDN Networks 

- unification of user and network states through place fusion is formally de­
fined. 

- readability is improved by adding pages with more abstract views of the 
system (e.g., Figs. 9.7 and 9.8). These pages are also useful during simula­
tion to show behavioural abstractions and for fast browsing. 

- substitution transitions can be applied to reuse behaviour that is shared by 
several components. 

- the page hierarchy gives a good overview of the structure of the specifica­
tion and can be used for fast browsing. 

• The elaborate graphics supported by the CPN tools makes the model more 
readable. Places and arcs representing states and state changes are drawn with 
thick lines, while those representing messages are drawn with thinner lines. 
Most of the graphical symbols from the original SOL diagrams are retained. 

• The use of structured colour sets (e.g., products, records, and unions) makes it 
possible for the CPN model to capture the detailed contents of messages with­
out describing implementation details such as the bit-layout. 

• The CPN model constitutes a single compact model embodying all the neces­
sary detail such as behaviour, data contents of messages, and system architec­
ture. In this way it is easier to achieve consistency. 

• The syntax check of the CPN model eliminates many errors and inconsisten­
cies. 

• The maintenance of the final specification is more feasible and controlled due 
to its compactness. Much redundancy has been eliminated by the reuse of 
pages. 

• The CPN model is formal and it can be validated by means of simulation and 
verified by means of occurrence graphs and place invariants. This means that 
errors and other shortcomings in the specification can be found before imple­
mentation. 

The use of CPN models does not necessarily imply that the protocol designers 
should use CP-nets directly for specification of new and existing protocols. It 
might be a better idea to integrate SOL and CP-nets in such a way that an SOL 
specification can be translated automatically into a CPN model - which then can 
be completed with CPN inscriptions capturing those aspects of the behaviour for 
which SOL is not well suited. Another possibility is to add the net inscriptions 
directly to the SOL diagrams, before the automatic translation into a CPN 
model. An integration of SOL and CPN can be done similarly to the existing in­
tegration between SAOT diagrams (also called IDEF diagrams) and CP-nets. For 
more details, see Sect. 14.1. 



Chapter 10 

VLSI Chip 

This chapter describes a project accomplished by Robert M. Shapiro, Meta Soft­
ware Corporation, Cambridge MA, USA, in cooperation with a manufacturer of 
supercomputers. The chapter is based upon the material presented in [52]. A 
brief presentation of the project can be found in Sect. 7.2 of Vol. 1. The project 
was conducted in 1990. 

We describe how CP-nets and the CPN tools were used to specify and analyse 
the behavioural aspects of a hardware design at the register transfer level. We 
constructed a CPN model of a VLSI chip used in the most recent supercomputer 
developed by the company. 

The chip manufacturer was interested in speeding up the design phase of the 
production cycle for new hardware. The designers specify a new chip by draw­
ing a set of block diagrams, which each contains a set of nodes called blocks and 
the connections between them. Each block represents a functional unit with a 
specified input/output behaviour. A complex block may be described by means 
of a separate block diagram, which is related to the block in a way which is 
analogous to the relation between a substitution transition and its subpage in a 
CPN model. When the designers have finished a new chip, the block diagrams 
are translated, by a manual process, into a simulation program written in a spe­
cial-purpose dialect of C. The simulation program is then executed on a large 
number of test data, typically 10 000 -20 000, and the output is analysed to de­
tect any malfunctions. 

The company wanted to eliminate the programming step, which was both 
prone to error and time-consuming. It was hoped that the block diagrams drawn 
by the design engineer could serve as the basis for automatic generation of a 
CPN model. To achieve this, the graphics of the block diagramming technique 
would have to be formalised and some inscriptions added to provide a complete 
behavioural description. 

Section 10.1 contains an introduction to VLSI design and validation. Section 
10.2 presents the CPN model of the VLSI chip. Finally, Sect. 10.3 presents a 
number of findings and conclusions for the project. 



150 10 VLSI Chip 

10.1 Introduction to VLSI Chip 

The purpose of the project was to investigate whether the use of CP-nets is able 
to speed up the design and validation of new VLSI chips at the register transfer 
level. We present the CPN model of an actual digital filter chip from a super­
computer and discuss how this model was used to validate the logic of the chip 
design. 

The basic idea was to replace the manual translation, from the block diagrams 
into the C program, with an automatic translation into a CPN model. It is im­
portant to understand that it is not the intention to stop using block diagrams. 
The designers will still specify the VLSI chip by means of block diagrams, and 
they will follow the simulation of the CPN model by watching the block dia­
grams. To support the new strategy three things are needed: 

• The existing editor for the block diagrams must be modified, so that it gets a 
fixed syntax with a well-defined semantics. 

• It must be possible to translate a set of block diagrams into a CPN model. 
• The CPN simulator must be powerful enough to handle the rather complex 

VLSI designs, and efficient enough to make it possible to check the large num­
ber of test data. 

Our project only dealt with the last two issues, which were considered to be the 
most difficult. It was shown that the block diagrams could be translated into 
CP-nets. This was done manually, but the translation process is rather straight­
forward, and we see no problems in implementing an automatic translation. The 
CP-net obtained only contains 15 pages, but during an execution there are almost 
150 page instances. This is because many subpages are used several times. This is 
the case, e.g., for a subpage representing a 16-bit adder. The CP-net was simu­
lated using the CPN simulator. When maximal graphical feedback was used, the 
simulation was slow - due to the many graphical objects which had to be updated 
in each step. However, when a more selective feedback was used, the speed be­
came more reasonable. 

The ultimate objective was to develop a design approach whereby the graphi­
cal description, with suitable inscriptions, would suffice both as a design medium 
and as a complete, directly executable specification of the behavioural properties. 

To test the new approach, the chip manufacturer provided a register transfer 
level design of the VLSI chip. The design included a set of block diagrams for 
the chip, supplemented by a number of pages with textual descriptions. Addition­
ally, we were given a C program simulating the behaviour of the design. 



10.2 CPN Model of VLSI Chip 151 

10.2 CPN Model of VLSI Chip 

The ePN model of the VLSI chip has the page hierarchy shown in Fig. 10.1. 
From this it can be seen that we model a VLSI System with three identical Filter 
Chips. Each Filter Chip has six different parts: Stage 1 .. Stage 6. The first of these 
contains two, rather complex, subparts which are described by pages Filter 
Multiplier Cell and Weight File Register. The remaining pages describe simple 
functional units: an OrGate (with two, three, or four inputs), a 16-bit Adder, 
and a 12-bit Limiter. 

Page VLSI System is shown in Fig. 10.2. It models three Filter Chips, of 
which the upper one is connected to a test environment that supplies random in­
put values and clock pulses. Once the behaviour of a single chip has been vali­
dated, the test environment can be extended to include all three chips (or any 
other desired number of chips). The test environment can easily be modified to 
read test data from a text file and record the results on another file. 

Page FilterChip is shown in Fig. to.3, from which it can be seen that the chip 
has a pipelined structure. Stage n receives clock pulses from stage n + I and sends 
clock pulses to stage n - 1. This is done via the places where the input/output arcs 
carry a small c. When a clock pulse is received, data is transferred to the next 
stage. This is done via the places with colour sets I16, 112, and Bool 
(representing 16-bit integers, 12-bit integers, and boo1eans). To work correctly, 
each stage must transfer its current data to the following stage before it receives 
the next set of data from the preceding stage. Hence, clock pulses travel back­
wards, while data travel forwards. The chip processes six sets of input data con­
currently. The data in Stage6 are the oldest, while those in Stage 1 are the 
youngest. 

FC] 
FC2 
FC3 

Prime 

Fig. 10.1. Page hierarchy for VLSI chip 



152 10 VLSI Chip 

r-------------------- VLSI System 
58 

,---------------------------------------~s8x 

c 

b1 

b2 

b3 

c 

Baal 

Baal 

l:. 

fload 

Filter Chip 
No.1 

Filter Chip 
No.2 

112 

112 

BO&' 

~~----------------------_r--d 

112 112 112 112 112 112 112 112 

Filter Chip 
No.3 

Fig. 10.2. CPN page for VLSI System 

adj 112 

112 

Baal 

pixout 

112 

Baal 

pixout 

112 

Baal 



ad 

10.2 ePN Model of VLSI Chip 153 

/..~ 

____ 1d ___ (f __ ~_l~E?a~. 
ad = (if ed then 1 else 0) + (if ul then 2 else 0) +-1 

bits(s8, 11. f)'4 + if fload then 8 else 0 

1/6 

c c 
0. 

S 
T 
A 
G 
E 
3 

Sf 
T 
Af 
G 
E 
5 

Fig. 10.3. ePN page for Filter Chip 

Filter Chip 



154 10 VLSI Chip 

The pages for the six stages are shown in Figs. 10.4-10.6. The eight transi­
tions in the centre of Stage 1 are substitution transitions, and they all refer to 
page FilterMultiplierCell. This represents the fact that the same functional unit 
is used eight times on the chip. 

In Stage 2 the four transitions SUMlL, SUMIR, SUM2L, and SUM2R repre­
sent registers. These registers establish the border between Stage 2 and Stage 3, 
and it can be seen that they only occur when they receive a clock signal from 
Stage 3, via the two c-transitions in the rightmost part of Stage 2. When a register 
is clocked the values present on the register's inputs are transferred to the regis­
ter's outputs. These new outputs then induce changes that propagate through the 
circuit. The propagation is blocked when arriving at the input sides of other 
registers. In this way the registers partition the circuit into a consecutive set of 
stages. All the remaining transitions in Stage 2 are substitution transitions. OR3 
and OR4 represent an OrGate (with three or four input signals) while + repre­
sents a 16-bit Adder. Altogether, each instance of Stage 2 has 16 subinstances 
(four Or Gates and twelve Adders). 

The last four stages are much simpler. As before, transitions with a thick 
border line represent registers. The two LIM transitions in Stage 3 are substitu­
tion transitions representing a 12-bit Limiter. The Limit transition in Stage 5 is 
an ordinary transition, which performs a slightly different limiting operation. 
This kind of limiting operation is only used once, and hence it is specified di­
rectly in Stage 5 instead of using a separate page. 

The twenty places between substitution transitions Stage 1 and Stage 2 (in Fig. 
10.3) are socket places. Each of these is related, via port assignments, to two 
port places (in Fig. 10.4) - one in the right-hand side of Stage 1 and the other in 
left-hand side of Stage 2. The layout is made in such a way that the two related 
port places always are horizontally aligned. Moreover, the port places appear in 
the same vertical position as the corresponding socket place. A similar layout is 
made for the ports and sockets in all other pairs of consecutive stages (and this is 
the reason why Stage 3 has a large empty space in the middle). For the remaining 
port/socket places we indicate the port assignment by using the same names for 
ports and their sockets. To improve readability, we have not shown the in­
put/output tags and the port assignments, and we have also omitted the colour 
sets of all ports. 



10.2 CPN Model of VLSI Chip 155 

Stage 1 

c 

R 

Fig. 10.4. CPN pages for Stage 1 and Stage 2 

Stage 2 

I-----. ....a 

~c 
~. 

I 
I 

I------....a 

b 
-----.·0 



156 10 VLSI Chip 

c 

116 

Bool 

c 

l! f 

112 

A 
D 
D 
0 
U 
T 

Stage 3 

C 

adjacent 
out 

Fig. 10.5. CPN pages for Stage 3 and Stage 4 

Stage 4 



Stage 5 

[not b andalso 1<40961%1 + 
[b orelse 1>=40961%((2"12)-1) 

/"-~ 
~iXO~ 

10.2 CPN Model of VLSI Chip 157 

parity(I,12) 

I 

Stage 6 

p=1 pout 

Fig. 10.6. CPN pages for Stage 5 and Stage 6 

The remaining pages are shown in Figs. 10.7-10.8. We only show one of the 
Or Gates. The others are similar, but they have a different number of arguments. 

The declarations of colour sets and functions are quite simple. They look as 
follows: 

infix **; 
fun «x: int) **0) = 1 

I (x**y)=x*(x**(y-l)); 

fun bits(i:int, s:int, n:int) = (1 mod (2**(s+I») div (2**(s-n+l»); 

color Clock = with c; 
color Bool = bool; 
color 11 = int with 0 .. 1; 
color I3 = int with 0 .. 7; 
color 14 = int with 0 .. 15; 
color 18 = int with 0 .. 2 ** 8 - 1; 
color 112 = int with 0 .. 2 ** 12 - 1; 
color 116 = int with 0 .. 2 ** 16 - 1; 
color 118 = int with 0 .. 2 ** 18 - 1; 

color Wfactors = product I3 * 18 * II; 

The infixed function x ** y returns xY. The function bits(i,s,n) allows an integer 
i to be viewed as a binary number. It extracts n contiguous bits, starting at high 
bit position s, and returns the result as an integer. 

Here we do not give an explanation of how the VLSI chip works. Such an .ex­
planation can be found in [52]. 



158 10 VLSI Chip 

c 

14 

Clock 

CL 

112 

S Out~I--+_~ 
112 l! 

Weight 
File 

Register 

Filter Multiplier Cell 

bits(s,9,10),r bitS(f, 15, 16) 

r------------------ Weight File Register 

14 

14 
wfa [a=bits(s, 1 0, 1)+ 

bits(wfa,1,2)'2] 
a 

a 

1'(0,0,0) +1' (0,0, 1) + 
1'(1,0,0) +1'(1,0,1) + 
l' (2,0,0) +1' (2,0,1) + 
1'(3,0,0) +1'(3,0,1) + 
1'(4,0,0) +1'(4,0,1) + 
1'(5,0,0) +1'(5,0,1) + 
l' (6,0,0) + l' (6,0, 1) + 
1'(7,0,0) +1'(7,0,1) 

O'(a,I,O)+ 
O'(a,r,1) 

Fig. 10.7. CPN pages for two complex functional units used in Stage 1 



10.2 CPN Model of VLSI Chip 159 

r---------------- OR Gate (4) 

Bool 
arg1 

Bool 
arg2 

arg3 
Bool 

arg4 
Bool ~~ 

arg 
116 

~erflOW 
Bool --

~. 
116 

b1 

b2 

Result 
result 

b3 
8001 

b4 

[ Result = b1 orelse b2 orelse b3 orelse b4 I 

Limiter 

a16 

Result result 
112 

[ Result = if b then ((2"12)-1) else bits(a16,15,12) I 

a 16 .. - bits(Result, 15, 16) .. 
po 

Adder -

reSlJlt-) 
-----~/16 

~~ f_(_Re_s_u_lt_>_(_2_··_16_-1_))-t.~(OVertiOW--) 
116 ~ - -----~~Bool 

[ Result = a16+b16 I 

Fig. 10.S. CPN pages for three simple functional units 

10.3 Conclusions for VLSI Chip Project 

Now let us compare the new design and validation strategy with the old. First of 
all, it is easier to translate the block diagrams into a CP-net than it is to translate 
them into a C program. According to the participating company, the latter often 
takes several man-months, while the construction of the CP-net only took a few 
man-weeks. The translation is also more transparent, in the sense that it is much 
easier to recognise those parts of the CP-net which model a given block than it is 
to find the corresponding parts in the C program. This is due to the fact that 
each page of the CP-net has almost the same graphical layout as the correspond­
ing block diagram, which means that it is relatively easy to change the CP-net to 
reflect any changes in the chip design. According to the chip manufacturer, it is 



160 10 VLSI Chip 

a major problem to maintain the C program. Moreover, as stated above, we be­
lieve that it will be easy to automate the translation from block diagrams to 
CP-nets. This means that the modified CP-net can be obtained without any man­
ual work at all. 

Secondly, when the new strategy is fully implemented, the designers will be 
able to make simulations during the design process. This means that the knowl­
edge and understanding which is acquired during the simulation can be used to 
improve the design itself, in a much more direct way than in the old strategy, 
where the entire validation is performed after the design has been finished. 
Working bottom-up, we validated each low-level page by itself (e.g., the 
Limiter, Weight File Register, and FilterMultiplierCell). To do this, values were 
manually inserted at the input ports. We used interactive simulations to investi­
gate typical occurrence sequences, and we also made a number of automatic 
simulations. Working top-down, we validated some of the highest level pages 
(e.g., the pages for the six stages), without including all their subpages. In this 
way it was possible to validate some of the crucial parts of the design before all 
the detailed functional units had been specified. 

Thirdly, the validation techniques of the old strategy concentrate on logic 
correctness, i.e., the functionality of the VLSI chip. Very little concern (and no 
tests) seems to be devoted to those design decisions which deal with timing issues, 
e.g., the division into stages and the determination of an adequate clock rate. 
This is surprising, because the timing issues are crucial for the correct behaviour 
and the effectiveness of the chip. Too-fast clocking implies malfunctioning while 
too-slow clocking implies unnecessary loss of speed. By means of timed CP-nets, 
it is rather straightforward to validate both logical correctness and the timing is­
sues by means of a single CPN model. However, our project was carried out be­
fore timed CP-nets were developed and implemented, and thus the project did 
not involve a validation of the time issues. 

Finally, occurrence graphs can be used to investigate both logical correctness 
and the timing issues. Due to the state explosion problem, it may not be possible 
to construct a full occurrence graph for the VLSI system. However, then we can 
use partial occurrence graphs or restrict the investigation to selected parts of the 
VLSI system, e.g., the individual stages. However, our project was completed 
before the occurrence graph tool was implemented, and thus the project did not 
use occurrence graphs. 

The only real drawback of the CPN approach was the speed of computation. 
It turned out that the execution of the C program was much faster than the exe­
cution of the CPN model. The CPN simulator at that time was simply unable to 
make the usual number of test runs. However, the project was carried out imme­
diately after the first version of the CPN simulator had been released. Based on 
the experience with this and other large models we have dramatically improved 
the speed of the CPN simulator. This means that it no longer is a problem to deal 
with the necessary amounts of test data. 



Chapter 11 

Arbiter Cascade 

This chapter describes a project accomplished by Hartmann Genrich, Gesell­
schaft fur Mathematik und Datenverarbeitung, Bonn, Germany and Robert M. 
Shapiro, Meta Software Corporation, Cambridge MA, USA. The chapter is 
based upon the material presented in [29]. The project was conducted in 1992. 

We describe how CP-nets and the CPN tools were used to model a cascade of 
arbiters. The main motivation for our work is the observation that CPN models 
perfectly meet circuit designers' need to visualise and experiment during the de­
velopment of their designs. Moreover, designers can use occurrence graphs to 
validate the correctness of the design. 

We develop two different types of CPN hardware models. Functional models 
specify what a component has to do, but not how it is done. To constitute a sound 
specification a functional model must exhibit certain properties. It must be 
deadlock free and it must react to input stimuli in the expected way. The valida­
tion of functional models is done by means of simulation and occurrence graph 
analysis. 

The other type of CPN models is called circuit models. They are implemen­
tation oriented and use gate-like building blocks, such as and-gates, or-gates, and 
c-elements. A circuit model demonstrates the feasibility of a design. It can be 
validated by means of simulation and occurrence graph analysis. We also com­
pare the behaviour of the circuit model to the behaviour of the functional model. 
This is done by means of occurrence graphs. 

Section 11.1 contains an introduction to the arbiter cascade. Section 11.2 pre­
sents the two CPN models of the cascade. We also discuss the different kinds of 
validation which we performed. Finally, Sect. 11.3 presents a number of find­
ings and conclusions for the project. 



162 11 Arbiter Cascade 

11.1 Introduction to Arbiter Cascade 

The asynchronous access of a group of users (e.g., processors) to a single re­
source (e.g., a bus) can be regulated by a cascade of arbiters. Figure 11.1 shows 
a cascade of depth two. It contains three arbiters and serves four users. The bus 
itself is not shown. 

Each arbiter serves two users at its input side and acts as a single user at its 
output side. By using a cascade it is possible to serve any number of users. A 
cascade of depth d 2:: 1 contains 2d_l arbiters and serves 2d users. The task of 
each arbiter is to reduce the behaviour of two independent users to the behaviour 
of a single one. 

User i makes a request by setting the request line Ri high. Then it waits for 
the arbiter to decide whether it is safe to accept the request. If this is the case, 
the arbiter sets the acknowledgement line Ai high. Otherwise, it rejects the re­
quest by setting the not-acknowledgement line Ni high. Before the arbiter can 
make a positive answer, it must communicate with the rest of the cascade by is­
suing a request and waiting for this to be acknowledged. The cascade works in 
such a way that it is guaranteed that at most one user has an accepted request 
(i.e., simultaneously a high request line and a high acknowledgement line). 

Eventually, the user releases the accepted request, which means that the bus 
can be used by other users. The release is done by setting the request line low. 
Now, the user must wait for its acknowledgement line to go low before making a 
new request. 

~ 1----«1 

~1<1----{ 

Fig. 11.1. Arbiter cascade 



11.2 CPN Model of Arbiter Cascade 163 

11.2 CPN Model of Arbiter Cascade 

Starting with an incomplete description of the desired functionality of our arbi­
ter, we first constructed a functional model providing a complete, unambiguous, 
and executable specification of our problem. The functional model has four CPN 
pages. The Cascade page provides the most abstract view of the system. It has al­
ready been shown in Fig. 11.1. All the transitions on the Cascade page are sub­
stitution transitions. They use three different subpages, which are shown in Figs. 
11.2 and 11.3. The three pages represent the Arbiters, the Users, and the 
Back End. The latter is used to terminate the cascade. The declarations are very 
simple: 

color Control = with c; 
color Signal = bool with (L,H); (* Low and High *) 

color Status = with Idle I ul I u2; 
color Name = subset Status with [ul, u2]; 
color SignalxName = product Signal * Name; 
color Answer = with AC INK; 

ro---------------------- Arbiter 

i 
[ ( v=H andalso s<>ldle ) i 

orelse i 
( v=L andalso s<>n ) ) i 

I 

c 

SignalxName 

f--...:..(v...:..,.-:n )----0,( R 

(v,n) 

Idle 

Status 

Status 

(v,n) 

if v=H 
then n 

else Idle 

c 

'------ ----

(v,n) 

(v,n) . [v=L,a=NK)%(v,n) 
Reject 

[v=H)%(v,n) 

(v n) [v=L,a=AC)%(v,n) 
, Accept 

SignalxName [v=H)%(v,n) 

, , , , , , , 

[ ( v=H and also s=ldle ) 
orelse 

( v=L andalso s=n)) 

v 

l ...... ~~ __________ , Answer 

Fig. 11.2. CPN page for Arbiter 



164 11 Arbiter Cascade 

var v: Signal; 
var s: Status; 
var n:Name; 
var a: Answer; 

In Figs. 11.1-11.3 we have hidden all those colour set inscriptions that are equal 
to Signal. Ports are always positioned along the borders of the pages and they 
usually have the same name as their corresponding sockets (except that the latter 
may be augmented with a digit). To improve readability, we have not shown the 
input/output tags and the port assignments. 

Now let us consider the Arbiter page in more detail. Incoming requests ar­
rive at the input ports RlIR2. When one of these receives a high-token, transition 
Receive occurs (the transition is also enabled when a low-token arrives; this 
situation will be discussed later). The %-operator in the input arcs is a shorthand 
for an if-then-else construction. When the left-hand expression evaluates to true, 
the value is the value of the right-hand expression. Otherwise the value is the 
empty multi-set. The variable n is either bound to ui or to u2. In the first case a 
token is removed from Ri. In the second it is removed from R2. When Receive 
occurs, it produces a token at place R. This token is a pair (H,ui) where ui is the 
requesting user. 

User 

v J--___ n_ol_v _ ____+< R 

p 1. 

v 

v 

Back End 

v 

AC ~ NK 
Siale 

a a [v=H Answer 
orelse a = NK l 

v v 

A~--------------~ 

Fig. 11.3. CPN pages for Users and BackEnd 



112 CPN Model of Arbiter Cascade 165 

Then the arbiter either Accepts or Rejects the request. The choice depends 
upon the Status of the arbiter. This place has always exactly one token. When 
neither of the two users has an accepted request, the token value is Idle. Other­
wise the token value identifies the user with the accepted request. If Status:;c Idle 
the incoming request is Rejected and the user is notified via transition 
Send Reject (which produces a high-token on NIIN2). If the request is Accepted, 
additional investigations must be performed, because another arbiter in the cas­
cade may have a user with an accepted request. To perform this investigation the 
arbiter Sends a request to its parent in the arbiter cascade. If a positive answer is 
obtained from the parent, the user is notified via transition Send Accept (which 
produces a high-token on AlIA2). If a negative answer is obtained, the user is 
notified via transition SendReject (which produces a high-token on NIIN2). 

Eventually the user makes a release. This is done by positioning a low-token 
on RlIR2. Transition Receive occurs as before, but now it produces a token of 
the form (L,ui). This means that Accept and Reject works in a slightly different 
way than before. If the Status of the arbiter is different from the identity of the 
user, there is nothing to release, and the user is informed about this via 
Send Reject (which produces a low-token on NlIN2). Otherwise, the Status is set 
to Idle and the user is informed via SendAccept (which produces a low-token on 
AlIA2). It is also necessary to inform the parent arbiter about the release. This 
is done by transition Send. The arbiter does not need to wait for an answer from 
the parent before it informs the user. This is because it can predict the answer to 
be received from the parent, by looking at place Answer. 

When the functional model was finished, it was validated by means of simula­
tion and occurrence graphs. In addition to verifying standard dynamic proper­
ties, such as liveness and boundedness, we showed that the CPN model had the 
expected behaviour, i.e., that it responded to user requests in the way which we 
expected. We also localised the appearance of true non-determinism (i.e., con­
flict situations, as opposed to the interleaving of concurrent events). 

When the functional model had been validated, it was used to develop a cir­
cuit model. This model is, in many respects, similar to the ePN model presented 
for the VLSI chip in Chap. 10. However, there is an important difference, which 
can be seen from page OrGate shown in the upper part of Fig. 11.4. In the ar­
biter model the gate-transitions do not remove tokens from their input places. 
This means that the places always contain a token (which is either L or H). It is 
not the tokens but the changes of their colours that flow through the net. To 
avoid that the transitions occur all the time, without any effect, we add a guard. 
In this way, a transition only occurs when it alters at least one output. 

One of the most crucial elements in the circuit model is the Mutual Exclusion 
Element, which can be seen in the middle part of Fig. 11.4. It chooses randomly 
between two high-tokens (on arg I and arg2), passing on only one of the requests 
and blocking the other until it is withdrawn, i.e., until the corresponding input 
goes low. 

Altogether, the circuit model contains 18 pages. The most abstract CPN view 
of the arbiter circuit is presented in the lower part of Fig. 11.4. It uses three 



166 11 Arbiter Cascade 

...... ---------------- OR Gate -

~ .. r1 ..... r-
Boo/~ +--_-'-R:::e::..:su"'II ____ tJy .. -::=;;;---

result 

arg2 !""I-_r2_--l~ 
Baal '-

Old Res 

[ Result = (rl orelse r2), 
Result <> Old Res 1 

Baal 

Mutual Exclusion Element -

~- Resull1 

Baal ""( resultl 
OidRes1 Baal 

Resul12 

arg2 r2 .. ""( result2 
Baal - OidRes2 Baal 

[ not (Resultl andalso Result2), 
if Result1 then (r1) else true, 

if Result2 then (r2) else true, 
if ((rl) andalso OldResl) then Resultl else true, 
if ((r2) andalso OldRes2) then Result2 else true, 

(Resultl ,Result2) <> (OldResl ,OldRes2) 1 

Arbiter 

Al~----------------------~ 

i+----{A3 

1----~R3 

A2~----------------------~ 

Fig. 11.4. CPN pages for Or Gate, Mutual Exclusion Element and Arbiter 



1l.2 CPN Model of Arbiter Cascade 167 

complex subpages, which are shown in Figs. 11.5-11.6. All transitions with a 
small black dot in one of the corners are substitution transitions that represent 
simple gates (e.g., an or-gate, and-gate, half-adder, c-element, or clocked flip­
flop). Each of these subpages has a single transition and works in a similar way 
as the Or Gate in Fig. 11.4. The transitions with two black dots have subpages 
that use two such simple gates. The declarations are extremely simple. There are 
only two colour sets: 

color Control = with c; 
color Bool = boo I with (L,H); 

~----------------------------------- One Change 

------+1 HFIiP2~ 

~--------------~ 

Nack or Pass On 

f1b 

r1a f-----t-----__+( r1b 

(i:r22aa)========::-~--- 1-----+(r2b 

Fig. 11.S. CPN pages for One Change and Nack or Pass On 



168 11 Arbiter Cascade 

r---------------- Pass On and Ack 

A1J--------_j And1 /4-------,. 

n2b~-------_+_______1 

A2~------_j And2 /4------" 

Fig. 11.6. CPN page for Pass On andAck 

11.3 Conclusions for Arbiter Cascade Project 

We have shown that CP-nets are adequate for the representation of hardware de­
signs, both at the functional level and the circuit level. 

The functional and circuit models presented in this chapter are so complex 
that they cannot, in practice, be validated by manual methods. We have found 
that the use of simulation is very important during the construction and initial 
debugging of the two kinds of models. In this way, hardware designers are able 
to experiment with their designs, trying out new ideas and obtaining valuable 
knowledge to be used in the rest of the design process. 

However, simulation is inappropriate for discovering some kinds of malfunc­
tioning, e.g., those caused by critical races. The problem is that these kinds of 
error appear in such unexpected situations and so seldom that they are unlikely 
to be found by simulations. Hence, we also used occurrence graphs. They allow 
us to investigate all possible occurrence sequences in a systematic way. 

We also used occurrence graphs to compare the behaviour of our two CPN 
models. We selected the places on the Cascade page (in Fig. 11.1) to be the inter­
esting ones, because they describe the protocol by which the Arbiters communi­
cate with the Users, the BackEnd, and the other Arbiters. For the circuit model 



11.3 Conclusions for Arbiter Cascade Project 169 

these interface places always have a token (of value L or H). Hence, it was 
straightforward to map each marking into an abstract marking, simply by ig­
noring all the other places. For the functional model the situation is slightly 
more complicated, since we do not always have a token on the interface places. 
When no token is present, we map the place into the value that the last token had. 
For this to be well defined it is necessary that all the possible last tokens (in the 
occurrence graph) have the same value, but this can easily be checked. 

Having defined abstract markings for both the circuit model and the func­
tional model, we compared the sequences of abstract markings generated by the 
paths in the two occurrence graphs. For each path in one of the O-graphs, we 
show that there exists a path in the other O-graph, such that the two paths have 
exactly the same sequence of abstract markings (when multiple, consecutive ap­
pearances of the same abstract marking are removed). In this way we have 
shown that the two ePN models have the same observable behaviour with respect 
to the selected set of interface places. The comparison was done on the fly, i.e., 
while the occurrence graph of the circuit model was being constructed. This is 
important, because small implementation errors may blow up the size of the 
O-graph and hence make it impossible to construct. More details about the com­
parison can be found in [29]. There it is also discussed how to investigate the de­
lay-sensitivity of our design. 

In an earlier paper [28], we constructed a functional model and a circuit 
model for a simpler version of the arbiter. There we combined the use of occur­
rence graphs with induction. We used occurrence graphs to prove that a single 
arbiter had some specified properties. Then we used induction to prove that this 
was also the case for a cascade of arbitrary depth. 



Chapter 12 

Document Storage System 

This chapter describes a project accomplished by Gert Scheschonk and Michael 
Timpe, C.I. T. Communication and Information Technology, Berlin, Germany, 
in cooperation with Bull AG. The chapter is based upon the material presented in 
[50] and [51]. The project was conducted in 1993. 

We discuss the modelling and simulation of a document storage system using 
eP-nets and the ePN tools. The modelled system is part of a large system which 
is capable of storing 20-30 million documents corresponding to a storage capac­
ity of 10 000-15 000 Gbytes. A total of more than a thousand users request an 
average of 10000 documents per hour. The documents are up to 75 years old. 
Hence they are scanned and stored as image files. 

The main goal of our project was to develop a ePN model of the critical 
parts of the system. The model was used to identify bottlenecks and to determine 
a hardware configuration providing the desired capacity and response time. For 
the storage media we considered different types and capacities. Moreover, we 
considered different kinds of juke boxes. 

An essential aim of our simulation was to investigate whether it would be pos­
sible to fulfil the required response time. When a set of documents is requested, 
the first document must be delivered within some specified amount of time, 
while subsequent documents must be available in the correct sequence and within 
the specified time interval. The documents are randomly distributed over the 
servers. This means that a request often will involve several servers. 

Section 12.1 contains an introduction to the document storage system. Section 
12.2 presents the ePN model of the document storage system. Section 12.3 dis­
cusses how the ePN model was simulated to determine a suitable configuration 
providing the desired response time. Finally, Sect. 12.4 presents a number of 
findings and conclusions for the project. 



172 12 Document Storage System 

12.1 Introduction to Document Storage System 

The documents in the storage system are divided into four priority classes, 
known as service levels: 

• SLl handles 80% of all requests. The documents in this class must be available 
without any noticeable delay. 

• SL2 handles 10% of all requests. The documents must be delivered within 
5 minutes. 

• SL3 handles 9% of all requests. The documents must be delivered within 
10 minutes. 

• SL4 handles the remaining I % of all requests. No response time is specified. 
This level is also used for backup of documents in the other service levels. 

Figure 12.1 shows the different kinds of hardware which are used for the four 
service levels. The documents of SLl are stored on optical disks which are di­
rectly accessible from the users' local workstations. The documents from the 
other service levels are stored in a global storage system. SL2 uses juke boxes of 

Service Level 1 

T 
o 
k 

F 

b 

e D 
n 

R 

n 
g 

T 
o 
k 

R 

n 
g 

b 
u 

d 

D 

a 

n 

e 

Service Level 2 

Service Level 3 

Service Level 4 

Fig. 12.1. Global architecture of document storage system 



12.1 Introduction to Document Storage System 173 

optical disks, while SL3 and SL4 use juke boxes of WORM CDs (Write Once, 
Read Many times). The documents are randomly distributed over the media. An 
index server keeps information about the location of all documents. 

The users have access to the system via workstations which are connected to 
the storage system by means of a number of token rings and an FDDI backbone 
ring (Fiber Distributed Data Interface). Each server handles a number of juke 
boxes. The system covers three different physical locations. Site 1 has the com­
plete equipment shown in Fig. 12.l. Site 2 only has SLl-SL3, while Site 3 has 
SLl-SL2. To obtain a document, a workstation first makes a request for location 
at the index server (which is shared by all three locations). Then it makes a re­
quest for delivery at the corresponding document server. 

The CPN model focuses on SL2 and SL3. There are 660 concurrent users. 
Each hour they request 6 000 documents from SL2 and 4 600 documents from 
SL3. Requests are divided into shorts requests (which involve 1-3 documents) 
and long requests (which involve 4-12 documents). The requests are assumed to 
be uniformly distributed over time (with a little bit of randomisation). This dis­
tribution was chosen by Bull. 

To minimise the use of man-power and to be able to meet the tight project 
deadline, the CPN model only includes those parts of the system which are ex­
pected to be time-critical. No performance problems are expected at the index 
server. Hence it is not modelled. SLI requests do not involve the servers and 
SL4 requests are few and with no specified response time. Hence we do not 
model these levels. 

The purpose of our simulation is to evaluate the performance of the juke 
boxes positioned at the servers. It should be determined whether they are able to 
deliver the requested documents within the specified response time. Another im­
portant question is to determine an appropriate configuration of the storage sys­
tem, i.e., the number of juke boxes in each server and the number of disks, disk 
drives, and robotics per juke box. The robotics are the mechanical devices that 
mount the different disks on the available disk drives. Usually, there are many 
more disks than disk drives. The mechanical process of mounting a disk on a 
disk drive by means of a robotic is very time-consuming. Hence the CPN model 
reflects this part in great detail. 

12.2 CPN Model of Document Storage System 

In this section we describe the project organisation and the CPN model which we 
constructed. 

The project group contained two persons from C.LT. and two persons from 
Bull. The former had a detailed knowledge of CP-nets and the CPN tools, while 
the latter had no prior exposure to Petri nets. Hence the project was preceded by 
a one-week training course, introducing the basics of Petri-net modelling and the 
CPN tools. After this training, the Bull project members were able to read and 
check the CPN models and to simulate different configurations on their own. 



174 12 Document Storage System 

The project began with a two-day meeting in which the critical parts of the 
system were identified. The entire project lasted five weeks. Three weeks were 
used to create the CPN model, one week to test the model, and one week to 
simulate a number of configurations. Altogether the project used approximately 
six man-months. This includes the time used by other Bull personnel to provide 
information to the project group and to evaluate the results. 

Figure 12.2 shows the most abstract view of the CPN model. It consists of an 
initialisation part, a processing part and a reporting part. The initialisation part 
reads the parameters of the system from a text file. Moreover, it generates to­
kens representing all system components (such as disks, disk drives, and robot­
ics) and tokens representing all requests (and their subrequests). As mentioned 
above, a request involves 1-12 documents, and thus it is modelled as a pair, 
where one component is a request time, while the other is a list of subrequests. 
Each subrequest is represented by a record with the following fields: 

{ ID = (Req,SubReq), 
TargetDisk = «SL,JB),Disk), 
Priority = ...... , 
Delays = [t1' t2, ... J}. 

The ID field identifies the subrequest by specifying the ordinal number of the 
request and the ordinal number of the subrequest. The latter is an integer 
between one and twelve. Target Disk identifies the disk where the document is 
located. This involves a service level, a juke box number, and a disk number. 
Priority is used to favour the early subrequests (of each request) - since they 
should be finished before the later ones. The initial priority is specified by a 
system parameter. Finally, Delays is used to record the time delays caused by the 

No of 
Requests 

Int 

Fig. 12.2. Most abstract CPN view of document storage system 



12.2 ePN Model of Document Storage System 175 

different operations. It is initialised to the empty list, and updated each time the 
subrequest encounters a delay. 

Each disk has its own disk queue, which is represented by a triple: 

«(SL,JB), Disk), Priority, [(sr\,t\), (sr2,t2), ... ]). 

The first component identifies the disk. The second gives a priority which will 
vary over time. The third is a list where each element is a pair denoting a subre­
quest and its request time. 

Next, let us consider the processing part of the ePN model. It represents the 
actions that are necessary to fulfil the requests. It starts by adding the subrequests 
to the appropriate disk queues. Then the subrequests are processed. Each juke 
box works in a loop, where it first selects a disk and then reads the documents 
specified by the subrequests in the selected disk queue. To select a disk, the disk 
must be unlocked and a disk drive and a robotic must be available. Moreover, 
the disk must have the highest priority (among those which can be chosen). 

When a disk has been mounted and spun up, all the requested documents are 
read and temporarily stored in the memory of the server. If the size of the 
stored documents exceeds the memory size, the server has to swap some docu­
ments to virtual memory. This causes a significant delay and hence it is mod­
elled. When all the requested documents have been read, the disk is dismounted 
and the disk drive becomes available for other subrequests. Then the server 
transmits the documents to the user workstations (via the FDDI backbone ring 
and the token rings). Finally, the server clears the documents from its memory. 

When a document reaches the requesting workstation, all the recorded delays 
are passed to the reporting part of the ePN model. The reporting part creates a 
text file containing the delays gathered throughout the simulation. This file is 
used for subsequent analysis in a standard spreadsheet/charting program. For 
each subrequest the report file contains information about: 

• request transfer time (from workstation to server), 
• waiting time (for a free disk drive and robotic), 
• preparation time (mounting, spin-up, reading of other requests in disk queue). 
• reading time (from disk), 
• stored time (in the memory of the server), 
• document transfer time (from server to workstation). 

The ePN model is relatively small and simple. The entire model consists of 10 
pages with only 41 places and 20 transitions (of which nine are substitution tran­
sitions). The construction of the model was complicated by the fact that the ePN 
simulator, at that time, did not work efficiently when some places had a very 
large number of tokens. To overcome this problem, groups of subrequests were 
mapped into a single token, where the colour was a list with an element for each 
subrequest. Analogously, disk queues were represented by only two tokens - one 
for SL2 and one for SL3. These modifications made the net inscriptions and the 
necessary ML functions a bit complex. After our project the algorithms and data 
structures of the ePN simulator have been totally redesigned, and now it is no 
longer so important to avoid large numbers of tokens. More details about the 
ePN model and the necessary modifications can be found in [50] and [51]. 



176 12 Document Storage System 

12.3 Simulation of Document Storage System 

We investigated four different configurations. For each of these, the system pa­
rameters were read from a file containing the following information: 

• Number of subrequests (for SL2 and SL3). 
• Maximal length of short/long requests and the ratio between the two kinds of 

requests. 
• Initial priority for subrequests. 
• Size of delays (for token ring transfers, spin-up, spin-down, reading of docu­

ment, disk-pick, memory swap). 
• Configuration of system (number of juke boxes, disks, disk drives, and robot-

ics in SL2/SL3). 
• Size of server's memory. 
• Length of period (over which the requests are distributed). 
• Capacity of each token ring (number of documents that can be concurrently 

transmitted). 

We first investigated a configuration with 11 juke boxes having a total of more 
than 5 000 disks. For this configuration the results were pretty bad. Only 9% of 
the SL2 subrequests and 22% of the SL3 subrequests were handled within the 
specified limits of 5 and 10 minutes, respectively: 

Configuration 1 SL2 SL3 

Juke boxes 6 5 

Disks (per juke box) 540 410 

Disk drives (per juke box) 2 2 

Robotics (per juke box) 2 2 

Capacity of each token ring 4 

Requests inside limit 9% 22% 

A more detailed analysis of the recorded delays showed us that the waiting time 
(for disk drives and robotics) and the document transfer time (over the token 
ring) were large, while all other delays were insignificant. Moreover, it was seen 
that the waiting time increased over the simulated time period. At the beginning 
the delay was reasonably, but gradually it became worse and worse. 

To remedy the problems with the waiting time, we tried a configuration that 
used a different kind of juke box with fewer, much larger disks and only one 
robotic. This was expected to increase the performance, since less time would be 
used to shift between different disks. With the new configuration, we obtained 
the following slightly improved results: 



12.3 Simulation of Document Storage System 177 

Configuration 2 SL2 SL3 
--

Juke boxes 8 7 
Disks (per juke box) 51 37 

Disk drives (per juke box) 2 2 

Robotics (per juke box) 1 1 

Capacity of each token ring 4 

Requests inside limit 10% 30% 

The detailed analysis showed that the new configuration had managed to decrease 
the waiting time (for disk drives and robotics), but simultaneously the document 
transfer time (over the token ring) had become worse. Hence, we increased the 
capacity of the token ring from 4 to 7 (while the remaining configuration was 
unaltered). This led to a dramatic improvement: 

---------------- --

Configuration 3 SL2 SL3 

Juke boxes 8 7 

Disks (per juke box) 51 37 

Disk drives (per juke box) 2 2 

Robotics (per juke box) 1 1 

7 I Capacity of each token ring 
+---

Requests inside limit 83% 100% i 

Finally, we added one more juke box for SL2 (while the remaining configura­
tion was unaltered). This gave us the following results, which were considered to 
be satisfactory: 

----.-~-- - --.. ----~~l 

Configuration 4 SL2 SL3 I 

I 

Juke boxes 9 7 

Disks (per juke box) 51 37 

Disk drives (per juke box) 2 2 

Robotics (per juke box) 1 1 

Capacity of each token ring 7 ! 

.. ~~--------------------------0/:-]----
Requests inside limit 98% 100% I 



178 12 Document Storage System 

12.4 Conclusions for Document Storage Project 

Our project had two different goals. The prime goal was to investigate the 
document storage system and propose a configuration that met the specified re­
quirements. A secondary goal was to introduce CP-nets and the CPN tools at the 
client company in such a way that they could be used in subsequent projects 
without external assistance. Both goals were achieved. The project group deter­
mined a suitable configuration and the client recognised CP-nets as a useful 
method which could be used to solve other problems arising within the company. 
After the project the client was able to continue the CPN experiments, e.g., to 
investigate new configurations. 

The main technical problem encountered during our project was the decrease 
in simulation speed caused by having a CPN model with a very large number of 
tokens at some places. This problem was overcome by modifying the CPN model 
-lumping some of the tokens together. With the new CPN simulator this modifi­
cation is unnecessary and hence it would have been much easier to develop the 
CPN model, which also would have been more straightforward to understand. 

The CPN tools contain charting facilities that can be used to display simula­
tion results. However, with the amount of data involved in our simulations, it 
turned out to be much more efficient and flexible to let the CPN model write all 
the raw results to a text file, for subsequent analysis in a standard spread­
sheet/charting program. 



Chapter 13 

Distributed Program Execution 

This chapter describes a project accomplished by lens B. l¢rgensen and Kjeld H. 
Mortensen, Aarhus University, Denmark. The chapter is based upon the material 
presented in [35]. The project was conducted in 1994. 

We present a project in which CP-nets and the CPN tools were used to inves­
tigate a protocol used in the distributed implementation of an object-oriented 
programming language. The language allows objects to be distributed on several 
computers. The protocol is used when an object on one computer invokes an ob­
ject on another computer. This works in a way which is similar to remote proce­
dure calls. 

During the modelling phase a number of simulation runs were performed to 
test the individual parts of the model (as these were developed) and to investigate 
the detailed behaviour of the protocol. The modelling and simulation increased 
the understanding of the protocol, and also caused some changes to the design 
and implementation of the protocol. Some of these changes were simple bug­
fixes, while others were conceptual simplifications or improvements of the 
performance of the protocol (e.g., by removing some unnecessary critical sec­
tions). 

At the end of the modelling phase, occurrence graphs and place invariants 
were used to verify that the protocol has certain desired properties, e.g., that 
there are no deadlocks, that objects always can continue to do remote object in­
vocations, and that a monitor construction correctly ensures exclusive access to a 
critical section. 

Section l3.1 contains an introduction to distributed program execution and 
the protocol used to implement remote object invocations. Section l3.2 presents 
the CPN model of the protocol. Section l3.3 discusses how the model was veri­
fied by means of occurrence graphs and place invariants. Finally, Sect. l3.4 pre­
sents a number of findings and conclusions for the project. 



180 13 Distributed Program Execution 

13.1 Introduction to Distributed Program Execution 

The Beta language is an object-oriented language which has been developed at 
Aarhus University over the last 20 years (in cooperation with a number of other 
universities and research institutes). An introduction to the Beta language can be 
found in [37]. Recently, Beta has been extended to allow objects to reside on dif­
ferent computers [8]. Such objects may interact by means of remote object invo­
cations, which in many respects are similar to remote procedure calls (RPC). 

Remote object invocation is implemented by means of a protocol contained in 
an application framework called DistBeta. To understand the protocol, it is im­
portant to know the following concepts from DistBeta: 

• An ensemble is the operating system (on a concrete computer on the net­
work). Each ensemble contains a number of processes, which are called 
shells. A shell may communicate with other shells (in a remote ensemble or 
in its own ensemble). Moreover, a shell may communicate directly with its en­
semble. 

• Each shell contains a set of threads (lightweight processes). The number of 
threads may vary dynamically. However, each shell always has: 
- at least one user thread executing the main program of the shell, 
- exactly one listener thread taking care of incoming requests from the 

network. 

The DistBeta framework has a class called the RPC handler. This class contains 
primitives for message passing and for serialisation and unserialisation of pa­
rameters (also known as marshalling). The parameters passed in an object invo­
cation may be ordinary data values, objects, or references to objects. 

Inside a shell each object has a local identifier. However, each object also has 
a unique global object identifier, OlD, which can be used in the entire system. 
Each shell keeps two tables which are used to map local identifiers into global 
identifiers and vice versa. One of the tables is for local objects while the other is 
for remote objects. 

Figure 13.1 shows an object OBi (in a shell SH, on a host HO,) which invokes 
a remote object OB2 (in a shell SH2 on a host H02). This involves the following 
sequence of actions: 

Network 

G H01 

H02 

GJ e-- -- - -- - ~ 
OBI OB2 

Fig. 13.1. Example of a remote object invocation 



13.1 Introduction to Distributed Program Execution 181 

• OBI determines the OlD of OB2. The parameters are serialised. OBI uses a 
method from the RPC handler of SH I to start the remote object invocation. 

• A request message is sent from HOI to H02. The message contains the OlD of 
OB2 and the serialisation of the parameters. OBI is blocked. 

• The RPC handler in SH2 receives the incoming request. A worker thread is 
allocated. The parameters are unserialised. The local identifier of OB2 is de­
termined from the OlD (using a table in SH2)' 

• The object OB2 is invoked with the specified parameters. 
• The worker thread receives the result. The result is serialised. Control is re­

turned to the RPC handler in SH2. The worker thread is released. 
• A reply message is sent from H02 to HOI. The message contains the serialisa-

tion of the result. 
• The result is unserialised by OB I. 

The protocol is rather lengthy and the complexity is increased by the fact that a 
number of shared resources are used, to which exclusive access is granted by 
means of monitors and semaphores. Some examples are: allocation/release of the 
different kinds of threads, use of the OlD tables, and the request of a new unused 
OlD (from an ensemble). 

13.2 CPN Model of Distributed Program Execution 

Our CPN model emphasises the description of the basic flow of control (inside 
threads and shells), the sharing of resources and the competition for access to 
critical sections. 

Threads are represented by tokens with the colour set Thread in which each 
colour is a pair. The first element (known as the Threadlnfo) contains the iden­
tity of the thread (together with the identity of the shell and the identity of the 
ensemble to which the thread belongs). The second element (known as the Envi­
ronment) contains different kinds of information needed to model the execution 
of the thread. Most places in the CPN model have Thread as colour set. The flow 
of Thread tokens describes the progress of the different threads. The presence of 
a Thread token on a place indicates that a thread is in the state represented by the 
place (e.g., ready to make an OlD lookup). 

Threads communicate by sending packets over a network. Packets are mod­
elled by the colour set Packet in which each colour is a record with three fields 
- describing the sender, the receiver, and the contents of the packet. The latter 
describes whether the packet contains a request, a reply or an error message. 
The actual data values are omitted - we are interested in communication pat­
terns, not in the concrete data values transmitted. 

Figure 13.2 shows the page hierarchy of the CPN model. From this it can be 
seen that the model consists of four parts: 

• Top-level consists of two pages (DistBeta and Shell Level). They provide the 
most abstract view of the system. 

• Network consists of a single page (Network). 



182 13 Distributed Program Execution 

• Sender consists of five pages (Send, Get, Put, Assign OlD, and RPC call). 
• Receiver consists of eight pages (Receive, Listen, Execute, Generate OlD, Get, 

Put, Assign OlD, and RPCcall). The last four pages are shared with the 
Sender. 

The total system contains 12 pages (with a total of 17 page instances). It has ap­
proximately 50 transitions and 70 places. Below we only describe two typical 
pages. The other pages are comparable with respect to the size of the net struc­
ture and the complexity of the net inscriptions. 

Page RPC call is shown in Fig. 13.3. The net elements with thick lines repre­
sent the control flow of the involved threads. By convention all places with thick 
border lines have Thread as colour set. The two remaining places (in the left­
hand part) represent the interface to the network. By convention all places with 
this kind of border line have Packet Buffer as colour set. A token on one of these 
places has as its colour a pair in which the first element identifies a shell SHi, 
while the second is a list of Packets (representing a queue of packets) being sent 
from/to SHi. 

When the topmost place in Fig. 13.3 contains a token, the corresponding 
thread is ready to initiate a remote object invocation, having already finished the 
necessary preparations, e.g., the serialisation of parameters. When transition 
Send occurs, a new packet is added to the output queue for the corresponding 
shell. This is modelled by changing a token colour at place ToNet from 
(( enslD, shllD), pckList) to (( enslD, shlID), pckListM[pckl), where (enslD, shlID) 
identifies the shell (and its ensemble), while pckList is the old contents of the 

Prime 

Shell Level 

. " " 
( Netw~ ~ (-R;e~e -~ 

.:- J':-: __ l __ 
! Listen \ (Generate OlD I "'-J-- -----

"-"' ----
1'----+1 Get ~ Execute \ 

"-"--'~--

"-"' 1'-----.0{ Put 

. " " 
Send 

"1" --' 
"-" -" .... 

{Assign OID I 

:=J=:: 
'--....... ~, "~~ ~~ ... : 

Top-level 

Network 

Sender 

Receiver 

Fig. 13.2. Page hierarchy for distributed program execution 



13.2 ePN Model of Distributed Program Execution 183 

buffer, and pck is the new packet. The AI\ operator concatenates two lists. The 
first two lines of the guard guarantee that the packet is put in the correct buffer, 
i.e., the one that corresponds to the ensID and shlID specified by the variable 
thrInf (which is of type Thread Info). The third line of the guard determines the 
new packet. This is done by means of a function NewPack which as parameter 
uses the RPCparam field in the environment envr. 

After the Send operation the thread becomes Blocked until an answer is re­
ceived via place From Net. When this happens the Receive transition occurs. It 
removes a packet pck from the head of the input queue of shell shl. The guard 
checks that the packet is addressed to the Blocked thread and also checks that the 
packet contains either a reply or an error message (i.e., differs from a Request). 
If it contains a reply, the thread enters the Success state. Otherwise the thread 
either enters the Begin state or the Error state, depending on the value of the 
boolean function Retry (which uses a field in the environment of the thread). 

From Fig. 13.2 it can be seen that page RPCcall also is used by the Receiver 
part of the DistBeta system. This happens when a receiving object performs an 
RPC with its ensemble to obtain a new OlD. 

Page Assign OlD is shown in Fig. 13.4. It models how OIDs are obtained 
- either from the ensemble or from a local cache. For the protocol to work cor­
rectly, the OlD requests must be executed one at a time (for each shell). This is 
guaranteed by using a monitor, which is represented by the dashed place and the 
two dashed arcs (in the right-hand side of the figure). Initially, Monitor Free 
contains a token for each shell. When an OlD request is initiated, the token for 
the corresponding shell is removed from Monitor Free. This prevents that other 

[In 

Out 

if not(Ok(pck)) andalso Retry(envr) 
then I '(thrInf,envr) else empty 

• _ • «en sId, shlId), pckList]) [en sId = #ens thrInf, 
:::)0 Net. ~ •• -...,: .-...,: .-_ •• -...,: .-_. • shlId = #shll thrIn!', 

• - «en sId, shlId), pckListAAlpckll--T"'" ....... pck = NewPack(#RPCparam envr)] 

(shl, pck::pckList) 
,....,,_Fr~.m-_N;.t "" •• -=- .. -=-.. -=- .. -=- -. -=-.. [thrInf = #to pck, 

.... --.._..,... ....... #cont pck <> aRequest] 
(shl, pckList) 

if not(Ok(pck)) andalso not(Retry(envr)) 
then 1 '(thrInf, assignRPCparam 

(envr, NOpck)) 
else empty 

--
Out i Out 

if Ok(pck) 
then I '(thrInf, assignRPCparam(envr, NOpck)) 
else empty 

Fig. 13.3. ePN page for RPC call 



184 13 Distributed Program Execution 

threads (of the shell) enter the monitor. When the request finishes, a token is 
returned to MonitorFree. This means that other threads (of the shell) may enter 
the monitor. For the input arc to P3, we have only shown the first element in the 
arc expression. The second element is quite complicated and not important for 
the discussion in this chapter. 

From Fig. 13.2 it can be seen that there are two instances of the page 
Assign OlD. One page instance is used by the Sender part and the other by the 
Receiver part. However, there is only one monitor for each shell. This is 
modelled by letting Monitor Free belong to a global fusion set. Intuitively, this 
means that the two page instances share the place. 

Our ePN model is an abstraction of the real protocol used in the DistBeta 
system. To be able to use occurrence graph analysis, we kept the model as clear 
and simple as possible. After discussions with the designer of the DistBeta sys­
tem, we chose to ignore a number of protocol aspects, of which the most impor­
tant are: 

[#ens thrInf = ensld, 
#shll thrInf = shlIdl 

lOut I _ _ _ _ PacketBuffer 

( To Net .). 
.. _-- -"'- ... ---

--(P;o~Nei:r- - --
- - - - PacketBuffer 

[#ens thrInf = ensld, -_.&...-.... 
#shll thrInf = shlIdl 

I 
__ L_ 

< Monitor Free ) 

Sheil -t- ~ 
I 
I 

( ensld,shlId) 
------.,/ 

Fig. 13.4. CPN page for Assign OlD 



13.2 ePN Model of Distributed Program Execution 185 

• We do not allow an object to act, simultaneously, both as a client and as a 
server. This means that it is impossible to create chains of invocations. 

• We do not model that the monitors and semaphores use queues to guarantee 
that competing threads are served in a FIFO manner. 

• We only model communication errors that happen on the sender side. 

13.3 Verification of Distributed Program Execution 

From the very beginning of our project, we had the intention of verifying the 
protocol by means of occurrence graphs. Hence, we were careful to construct the 
ePN model in such a way that the number of reachable states remained manage­
able. For example, we did not include actual data values in the packets, but only 
information about the packet type, i.e., whether the packet represents a request, a 
reply, or an error message. We also tried to model the different operations of 
the threads with as few transitions as possible, to minimise the state explosion 
caused by the different interleavings between operation sequences. 

We constructed O-graphs for a number of different initial markings, each 
representing a possible configuration of the protocol system, i.e., a particular 
collection of ensembles, shells, and threads. Due to the state explosion, we were 
only able to construct O-graphs for small configurations. Hence, we cannot claim 
to have made a total verification of the protocol (which actually has an unlimited 
number of possible configurations). However, for small configurations we did 
manage to prove that the protocol possesses the following behavioural proper­
ties: 

• The system has no dead markings (i.e., no deadlocks). 
• All reachable markings are home markings (which implies that they all are 

reachable from each other). 
• Each user thread remains active, in the sense that it always has the possibility 

of making a new request for a remote object invocation and getting a reply 
back (formulated as liveness of some particular sets of binding elements be­
longing to transitions Send and Receive on the page RPCcall; the reply may be 
an error message). 

To verify these properties, we actually had to make a small modification of the 
ePN model. The problem was that an ensemble may fail to provide an OlD to a 
thread, which then becomes Dead. To avoid this situation, we simply assume that 
all OIDs are provided by the local cache. This is achieved by adding the guard 
(false] to transition Ensemble Provides 0 ID in Fig. 13.4. With this simple modi­
fication the three properties could be verified. 

During the O-graph analysis we considered the four configurations shown in 
Fig. 13.5. Ensembles are drawn as boxes, shells as rounded boxes, and threads as 
black dots - similar to Fig. 13.1. As an example, the first configuration consists 
of one ensemble, with one shell and two threads. The O-graphs were constructed 
on a Sun Sparc 20 with 256 MB physical RAM. For each configuration we give 
the time used to calculate the O-graph and its size. For the last configuration we 



186 13 Distributed Program Execution 

were unable to construct a full O-graph due to lack of memory. Hence, we are 
only able to provide a lower limit for the computation time and size. To verify 
the dynamic properties mentioned above, we used a number of standard queries, 
implementing the O-graph proof rules described in Sect. 1.4 of Vol. 2. The time 
used to formulate and execute these queries was small compared to the time it 
took to construct the O-graphs. 

Configuration 1 is more likely to lead to a dead marking than configurations 
2 and 3 (in the case where we have an incorrect protocol). The reason is that all 
monitors, resources, and critical sections are local to shells, and hence things be­
come more interesting when several threads belong to the same shell. For con­
figurations 2 and 3, the O-graphs have exactly the same size. This is not sur­
prising. In both cases, the two user threads are independent, because they belong 
to different shells. Hence, they never have to wait for each other. 

It is easy to see that there are a number of other configurations with three 
user threads (e.g., three ensembles, one shell in each, and one user thread in each 
shell). However, all these configurations have O-graphs which are larger than 
the O-graph of configuration 4 (because threads that run in the same shell are 
forced to wait for each other while threads in different shells can proceed inde­
pendently of each other). Hence, it should be clear that the available computer 
and tool support only allow us to construct full O-graphs for configurations 1-3. 
Here, it is worthwhile to mention that we used a version of the occurrence graph 
tool which was far from optimal with respect to use of memory. 

Above, we have described how O-graphs were use to verify the final version 
of the CPN model. However, we also used occurrence graphs to debug our 
model. Occurrence graphs provide a fast and easy way to investigate a complex 
system. To handle a larger configuration, we can construct partial O-graphs. 
This allows us to investigate, in a systematic way, a much larger number of oc­
currence sequences than can be handled by simulation (in a reasonable time). 
More information about the construction of partial O-graphs can be found in 
Sect. 1.7 of Vol. 2. 

Configuration Minutes Nodes Arcs 

1 I~I 1.6 5501 13 725 

2 I@@I 12.7 21554 54793 

3 ~~ 10.9 21554 54793 

4 Ic···)1 ~ 87.5 ~ 75018 ~ 183827 

Fig. 13.5. Size of O-graphs for distributed program execution 



13.3 Verification of Distributed Program Execution 187 

To reduce the size of the O-graphs and hence be able to deal with larger con­
figurations, we tried to simplify our CPN model by mapping sequences of 
neighbouring transitions into a single transition, using a reduction rule formu­
lated and proved in [31]. In this way we were able to remove five transitions and 
five places from the model. This may seem insignificant, since it removes less 
than 10% of all nodes in the CPN model, but it implied a 50% reduction of the 
size and construction time of the O-graphs for configurations 1-3. However, un­
fortunately we were still unable to construct a full O-graph for configuration 4. 
More details about the reduction can be found in [35]. 

It would also have been obvious to try to reduce the size of the occurrence 
graphs by using permutation symmetries, as described in Chap. 5. However, this 
was not attempted. At the time where our project was conducted, we did not 
have adequate computer support for such a task. 

Compared to the occurrence graph method, the use of place invariants has the 
great advantage that we do not have to calculate all reachable markings, because 
the necessary checks are static and local. Another advantage is that it is possible 
to conduct proofs that are independent of the chosen configuration and hence 
valid for all of them. The major disadvantage of the place invariant method is 
that it is less automatic than occurrence graphs. To formulate and use place in­
variants, the user needs a fair amount of mathematical skill. Moreover, the use 
of invariants (to prove dynamic system properties) involves a mathematical 
proof which often is prone to error and time-consuming. 

By means of place invariants we were able to verify the following properties 
of the protocol system: 

• The set of user threads is constant, i.e., no user thread ever disappears and no 
new user thread is ever created. 

• The set of listener threads is constant. 
• The set of network input buffers is constant. 
• The set of network output buffers is constant. 

The monitor at page Assign DID works correctly, i.e., there are never two 
user threads from the same shell inside the monitor. 

From our knowledge of the protocol and the CPN model, it was quite obvious 
that we would expect these properties to be satisfied. It was straightforward to 
get the ideas behind the properties and also easy to formulate them in terms of 
place invariants. 

For the first two properties this was done by choosing a set of weights that 
map all tokens representing userllistener threads into their Threadlnfo part, 
while all other tokens are ignored (i.e., mapped into the empty multi-set). For 
the next two properties we only used non-zero place weights at those place in­
stances that correspond to input and output buffers (i.e., the places To Net and 
From Net in Fig. 13.4). For the last property, Monitor Free (in Fig. 13.4) got the 
identify function as weight. The places of the critical section got the weight 
ShellID, which maps each Thread token into the identity of the shell (and en­
semble) in the Threadlnfo part. All other places had the zero-function as weight. 



188 13 Distributed Program Execution 

The correctness of the first four invariants could be established, quite auto­
matically, by an early version of the invariant tool described in Sect. 4.4 of Vol. 
2. However, for the fifth invariant the tool was unable to prove that the invariant 
was respected by transition Receive on page RPC call. This transition was simply 
too complex to be handled by the present version of the invariant tool. Hence, 
the transition had to be covered by a manual proof. To increase our confidence 
in the manual proof, we used the O-graphs to check that the fifth invariant was 
satisfied for configurations 1-3. We simply made a search where it was checked 
that each reachable marking fulfilled the invariant. 

13.4 Conclusions for Distributed Program Execution Project 

In this project we have modelled and verified a protocol for remote object invo­
cation in an object-oriented language. 

First we built the ePN model. The discussions with the protocol designer and 
the actual modelling work improved the understanding of the protocol. As a con­
sequence a number of modifications were made to the protocol. In particular, 
some unnecessary critical sections were removed. 

The model built in this project is too complex to be adequately investigated by 
simulations alone. Hence, the next step was to verify the ePN model by means of 
occurrence graphs and place invariants. O-graphs were used to prove dynamic 
properties such as absence of dead markings and liveness of specific sets of 
binding elements. Place invariants were used to prove a quite different type of 
dynamic properties, e.g., that certain sets of threads remain constant, and that a 
monitor construction correctly ensures exclusive access to a critical section. 

During the verification no errors were found and hence this made no direct 
contribution to the protocol design/implementation. However, the verification 
increased our confidence in the correctness of the protocol. 



Chapter 14 

Electronic Funds Transfer System 

This chapter describes a project accomplished by Valerio O. Pinci and Robert M. 
Shapiro, Meta Software Corporation, Cambridge MA, USA, in cooperation with 
Marine Midland Bank of New York and Societe Generale. A brief presentation 
of the project can be found in Sect. 7.4 of Vol. 1. The chapter is based upon the 
material presented in [42]. The project was conducted in 1989. 

We describe how CP-nets and the CPN tools were used to develop a bank 
software application for supervising electronic funds transfer. For our project 
we used a new software development methodology. Requirements analysis and 
system specification were done by means of Structured Analysis and Design 
Technique (SADT), producing a functional description of the system activities. 
System design and verification were done by means of CP-nets, creating execu­
table models used for rapid prototyping and validation of behavioural properties. 
Finally, implementation was done by means of the Standard ML programming 
language. The three parts of the development process were closely intercon­
nected. The CP-nets were derived from the SADT diagrams, while the final ML 
code was derived from the CP-nets. 

The ideas presented in this chapter have also been used in a number of other 
projects. Some of these have combined SADT and CPN. They have augmented 
informal SADT descriptions with additional details and transformed them into 
CP-nets constituting a more precise and executable model. Examples are the 
Bank Courier Network in Chap. 15, the Nuclear Waste Management Programme 
in Chap. 19, and the Radar Control Post in Sect. 7.3 of Vol. 1. Other projects 
have used the ML code from the CPN simulator as implementation of the system. 
On an experimental basis, this was done for the Security System in Chap. 1. 

Section 14.1 contains an introduction to SADT and explains how SADT dia­
grams are translated into CPN models. Section 14.2 introduces the electronic 
funds transfer system and the SADT model of it. Section 14.3 presents the dif­
ferent CPN models of the funds transfer system. The first CPN model was used 
for rapid proto typing while the last was used for generation of stand-alone ML 
code constituting the final implementation. Finally, Sect. 14.4 presents a number 
of findings and conclusions for the project. 



190 14 Electronic Funds Transfer System 

14.1 Introduction to SADT 

In our project we used three different kinds of descriptions/languages: 

• Structured Analysis and Design Technique (SADT) was used in the early proj­
ect phases to specify the functional decomposition of the system and the data 
flow dependencies between components. 

• CP-nets were used to add data descriptions and behavioural aspects to the 
SADT specification. The CP-nets were simulated to study the dynamic prop­
erties of the new system and to evaluate the impact of different design deci­
sions. This worked as a kind of prototyping. 

• Standard ML was used to implement complex algorithms and as the target lan-
guage for the semi-automatic production of executable code. 

SADT is a method for functional description of complex systems. SADT is in 
widespread use in some European countries and in the United States (where it is 
known as IDEF). SADT diagrams are in many respects similar to CP-nets, and 
this means that they consist of a set of pages. In the SADT terminology each page 
is called a diagram. However, here we shall stick to the CPN convention and use 
the term diagram for a set of pages which constitutes a model. Each SADT page 
contains a number of rectangular boxes. They are called activities (or functions) 
and they model actions in a way which is similar to the transitions of a CP-net. 
The activities are interconnected by arcs, which are called arrows. There are 
three different kinds of arrows. They represent data/physical flow, control flow, 
and mechanisms (i.e., availability of resources). SADT has no counterpart to 
places and this means that the arrows interconnect activities directly with other 
activities. However, each arrow has a label, and this plays a role similar to the 
colour sets of CP-nets. The three kinds of arrows are distinguished by their po­
sition. They all leave the source node via the right side, but they enter the desti­
nation node from the left (data/physical flow), the top (control flow), and the 
bottom (mechanisms). Finally, each SADT page (except the most abstract page) 
is a refinement of an activity of its parent page (superpage), and this works in an 
analogous way to the substitution transitions of CP-nets. A detailed introduction 
to SADT can be found in [38]. 

SADT diagrams are often ambiguous. As an example, a branching arrow may 
mean that the corresponding information/material sometimes is sent in one di­
rection and sometimes in another. However, it may also mean that the informa­
tion/material is split into two parts, or that it is copied (and sent in both direc­
tions). The designers of SADT argue that it is adequate to allow such ambigui­
ties, because they primarily view SADT as a language for description of func­
tionality at an abstract level, without having to worry about the detailed behav­
iour, which in their opinion is an implementation detail. However, we want to 
use SADT to specify behaviour and we want to use it to specify executable 
simulation models. It is then obvious that all such ambiguities must be removed. 
This means that SADT must be augmented with better facilities to describe the 
detailed behaviour of activities, e.g., to specify what a branching arrow means. 



14.1 Introduction to SADT 191 

There are many different ways to describe the behaviour. Several papers on 
SADT propose to attach a table to each activity. Each line in the table describes a 
possible set of acceptable input values and specifies the corresponding set of out­
put values. Another, and in our opinion much more attractive possibility, is to 
describe the input/output relation by a set of arrow expressions and a guard - in 
exactly the same way that the behaviour of a CP-net transition is described by 
means of the surrounding net inscriptions. Thus we introduce a new SADT dia­
lect, called SADTcPN (or IDEFcpN). In addition to the added arrow expressions 
and guards, SADTcPN has a global declaration node (containing the declarations 
of types, functions, operations, variables, and constants). It is possible to use fu­
sion sets, code segments, and time delays in a way similar to that of CPN models. 

Due to the many similarities between SADTcPN and CP-nets, it is straight­
forward to translate an SADT CPN diagram into a behaviourally equivalent CPN 
model. This means that the CPN simulator can be used to investigate the behav­
iour of SADT models. An SADT tool [39] allows the user to construct, syntax­
check, and modify SADTcPN diagrams. This tool works in a similar way to that 
of the CPN editor, and many parts of the two user interfaces are identical. The 
SADT tool can create a file containing a textual representation of the SADTcPN 
diagram, and this file can be read into the CPN simulator, where it is interpreted 
as a CPN model. The translation from SADT CPN to CPN models is thus totally 
automatic. The user views the simulation results on the corresponding CPN dia­
gram - but this is not a big problem because the two diagrams look almost iden­
tical. Figure 7.6 in Vol. I shows an SADTcPN page, while Fig. 7.7 shows the 
corresponding CPN page obtained by the automatic translation. 

As described above, it is necessary to add behavioural information to an 
SADT diagram in order to obtain an executable CPN model. The behavioural 
information can be added before or after the automatic translation. If the be­
havioural information is added before the translation, i.e., in the SADT tool, we 
have the following sequence of diagrams: 

SADT diagram -> SADTcPN diagram -> CPN diagram. 

If the behavioural information is added after the translation, i.e., in the CPN 
tool, we get: 

SADT diagram -> Net structure of CPN diagram -> CPN diagram. 

In the electronic funds transfer project we used the latter scheme. The automatic 
translation transformed the SADT diagram into the page hierarchy, the net 
structure, and the colour set names of a CP-net. The basic idea behind this 
translation is to replace each SADT arrow: 

I Activity If-------------l.~1 Activity 

with a CPN place and two CPN arcs: 

f--------l.~Ol------I,~ Activity 
'------' 

Activity 



192 14 Electronic Funds Transfer System 

However, since SADT arrows often fork and join, it is more correct to say that 
we replace each bundle of SADT arrows: 

with a CPN place and a number of CPN arcs: 

To be able to do this, it is necessary to require that all arrows in a bundle join 
before they fork. This implies that the arrows have a common section, where the 
CPN place is positioned. This demand is not really a restriction. It is satisfied by 
almost all SADT diagrams, and when it is not, it is usually easy to obtain by a 
simple local modification of the corresponding SADT page. 

Each CPN place gets a colour set which has the same name as the label at­
tached to the corresponding SADT arrow. This means that there are a lot of dif­
ferent colour sets - often one for each place in the CPN model. In practice, 
many of these colour sets denote types which are structurally equivalent, i.e., 
have the same elements. It would of course be easy to replace each such group of 
colour sets by a single colour set. However, this would make the CPN models 
less comprehensible, because the SADT arrow labels convey important informal 
information about the purpose of the arrow. An alternative solution would be to 
map the arrow labels into place names, and then add colour sets manually. Some 
SADT dialects allow the modeller to create a data dictionary specifying a type 
for each arrow label. When this is done, it is straightforward to use the data dic­
tionary to obtain the necessary colour set declarations. 

The individual SADT pages are related to each other in a very similar way to 
the one known from CPN models. A complex activity may be refined, i.e., de­
scribed in more detail at a separate page, typically by dividing it into 3-5 subac­
tivities. The refinement page has the same incoming and outgoing arrows as the 
activity it refines. These inputs, outputs, controls, and mechanisms are mapped 
into sockets (of the substitution transition representing the refined activity) and 
ports (of the subpage representing the refinement). Actually, the SADT hierar­
chy concepts are slightly more restricted than those of CPN models. In SADT it 



14.1 Introduction to SADT 193 

is not possible to reuse a page (without copying it). Hence there is only one in­
stance of each page, and the page hierarchy is a tree, while in CPN it may be an 
acyclic graph. Moreover, SADT has no fusion sets. As mentioned above, fusion 
sets, code segments, and time delays have been added to the SADT CPN dialect. 
This has turned out to be very useful, facilitating the modelling of complex sys­
tems. 

The combination of SADT, CPN, and ML has a number of advantages. Some 
of the most obvious are the following: 

• SADT's loose notation, its simple graphic layout conventions and its strong de­
composition primitives make it easy to learn. Moreover, there are a number of 
textbooks and courses available. In a few weeks designers can become familiar 
with the SADT language and learn to generate descriptions that are easy to un­
derstand and well structured. 

• The automatic translation from SADT diagrams into the net structure of CPN 
models ensures a large degree of consistency between the descriptions used in 
the early and middle phases of the system development. This is in particular 
the case when the behavioural information is added to the SADT diagrams be­
fore the translation into CP-nets. 

• CP-nets allow the designers to prototype/validate different aspects of the sys­
tem. CPN models can be obtained throughout the entire analysis and specifica­
tion phase. In this way valuable insight in the problem area is obtained early 
enough to influence the design. This is in contrast to many other system devel­
opment methods, where validation is done after the specification has been fin­
ished and often by a totally different group of people. 

• The use of Standard ML as inscription language for CP-nets makes it easy to 
describe quite complex data structures and algorithms. In this way it is possi­
ble, gradually, to extend the initial system prototype towards a more detailed 
implementation. 

• From the internal code used by the CPN simulator, it is possible to obtain 
stand-alone ML code, which can either be used for further proto typing or as 
the final implementation. 

14.2 Introduction to Electronic Funds Transfer System 

Electronic bank-to-bank funds transfer deals with the electronic movement of 
funds, i.e., money. In the USA this is done via two dedicated payment networks 
(Chips and Fedwire). The average daily transfer amounts to trillions of dollars 
and is constantly increasing. This has created the potential for major financial 
disruption triggered by the failure of a single banking house. The speed at which 
a transaction is processed allows banks to execute secondary and tertiary pay­
ments based upon expected incoming funds - a potential disaster if the payer fails 
to deliver the cash. When a computer failure at Mellon Bank required an exten­
sion of the business day to correct their systems, the Federal Reserve granted the 
extension, but failed to give proper notice of the situation. Many banks ended the 
day in debt since they expected payments which did not arrive that day. Conse-



194 14 Electronic Funds Transfer System 

quently, many banks had to buy settlement funds at the end of the day to cover 
their debts, driving the cost of overnight borrowing far above the norm and 
producing significant losses. 

Our project was carried out in cooperation with two banks, Societe Generale 
and Marine Midland Bank of New York. The project involved the design and 
implementation of new software to control the electronic transfer of money be­
tween banks. The purpose was to reduce the risks without causing too much de­
lay. Two managers at the banks involved had an idea for a new control strategy, 
which would allow the relevant staff to use computer support to control the 
funds transfer. The two managers concretised their idea in terms of a relatively 
small SADT diagram which contained a rather informal description of the pro­
posed algorithm. The constructed SADT diagram was translated to a CP-net, and 
more accurate behavioural information was added by an experienced CPN mod­
eller. This was done in close cooperation with the two bank managers, who also 
participated in the debugging, during which the original algorithm was tested 
and slightly improved. The additional behavioural information could just as well 
have been added before the translation, i.e., by means of the SADT tool instead 
of the CPN editor. 

The new application is used for two different purposes: to predict the debt 
positions as the day evolves and to determine in what sequence the payments 
should be executed. Since the number of payments that can be executed every 
hour is limited by the network capacity, the rate of flow of money can be in­
creased by grouping together transactions with similar characteristics, such as 
the debit and credit parties. Also, the net result of incoming and outgoing pay­
ments with similar characteristics may be calculated, thus reducing the amount of 
money that travels through the networks. 

The SADT specification was built by a team of four people, having different 
job functions at Marine Midland Bank of New York. Figure 14.1 shows the most 
abstract SADT view of the new software. The system is viewed as a single activ­
ity, called Manage lntraday Debt. Inputs are bank-to-bank transactions, called 
lnterday Posts and lntraday Posts, together with a Start of Day Position for debt. 
Outputs are Scripts containing the order in which the transactions should be exe-

Interbank 
Rules 

Interday Posts ----i~ 

Intraday Posts ---~ 

Start of Day Positions 

Process 
Systems 

ProceSSing 
Rules 

Manage 
Intraday 

Debt 

Model 

f---. Scripts 

Records 

Relationship 
Contact 

Fig. 14.1. Most abstract SADT page for electronic funds transfer system 



14.2 Introduction to Electronic Funds Transfer System 195 

cuted and Records of the transactions. Inputs are transformed into outputs under 
the control of Interbank Rules and Processing Rules using the mechanisms 
Process Systems, Model, and Relationship Contact. Figure 14.2 shows the re­
finement of the activity in Fig. 14.1. Here we find the same inputs, outputs, con­
trols, and mechanisms. We also see that the activity has been broken down into 
three subactivities Debt Management, Source Data Management, and Debt Simula­
tionModel interconnected by a number of arrows. Each of these subactivities are 
further decomposed on separate pages, leading to an SADT description contain­
ing 9 pages and a total of 32 activities. 

The Source Data Management activity collects and pre-processes the necessary 
data. Then it splits the transactions into those that are already executed and those 
that have yet to be executed. The actual and expected positions are determined. 
Transactions with similar characteristics are grouped together and the net result 
of incoming and outgoing payments is calculated, making it possible to reduce 
the actual amount of money transferred via the networks. 

The Debt Simulation Model activity orders the transactions in such a way that 
the average debt is minimised. Then the transactions are checked against differ­
ent kinds of limits (regulating the amount of money a customer may transfer and 

Interbank 
Rules C1 

Processing 
C2 Rules 

f---Process Rules 

Executable 
Transactions 

/ 
/ 

Scripts 

01 ~ 

Debt Plan , Guidelines Credit Decision Override Files and M IS 

± Debt "- \ 
Management 

,/ ~ Data Management 
AI r------- ~ r--Guidelines 

Relationship t 
Contact M3 

~Netting 
Agreements 

Bulk Transaction _ 
Potential Netting 

Source 
Partners 

Information L;t: 
Data Interday Posts 11 ~~--~ 

Intraday Posts 12 / Management ~ 
~ Start of Day Positions 13 / A2 

Internal External Credit t 
and Cap Excep~ .//1 

Banking Systems Netted ActlVltv L--. 

I 

+--~ 
I 

I 

I 

~r-
~ 

r---t--tt---, 
Debt 

~ 

1 
Rec 

02 
ords 

_Regu la· 
tions 

~. 
Audit Trails 

r---Mod el 
elines Guid 

r---Positi ons 

Not Nettable 
Simulation r-----.-

Internal 
M1 Activity ... Model 

h External A3 
Credit and Process 

Cap Exceptions Systems Modeling ------' 

/ Systems 

M2 Model 

Fig. 14.2. Refinement of the SADT page in Fig. 14.1 



196 14 Electronic Funds Transfer System 

the size of ongoing engagement between two banks/countries). When all pay­
ments have been checked a debt plan is produced. 

The Debt Management activity takes care of the transactions which do not pass 
the limits. These payments generate exceptions that can be overridden, e.g., due 
to an expected receivable. If an exception is overridden, the transaction is re­
inserted into the list of transfers to be executed. Otherwise it is postponed. The 
debt plan is reviewed. If acceptable, it is turned into a script for executing trans­
fers. Alternatively, a new debt plan may be produced by modifying some of the 
parameters which control, e.g., the transaction sequencing algorithm. 

A more detailed description of the SADT model and the funds transfer con­
trol algorithm can be found in [42]. 

14.3 CPN Model of Electronic Funds Transfer System 

When the SADT model had been constructed, it was transformed into a CPN 
model, as described in Sect. 14.1. In this process experienced CPN persons 
worked together with bank staff to find, clarify, and remedy inconsistencies and 
errors. Some changes to the SADT diagram were made, in particular to the ar­
row structure. It took five man-weeks to create the SADT diagram, only one 
man-week to get the first CPN model, and 16 man-weeks to develop this into the 
final CPN model. 

Figure 14.3 shows the most abstract page of the CPN model, while Fig. 14.4 
shows its direct subpage. To make Fig. 14.4 readable, at the chosen scale, we 
have hidden all colour sets. The two CPN pages correspond to the SADT pages 
in Figs. 14.1 and 14.2, and it can be seen that the graphical layouts of the CPN 
pages are very similar to the layouts of the SADT pages. 

During the project there were several different versions of the CPN model. 
The first of these was obtained more or less directly from the SADT diagram, 
and it was rather crude, with simple arc expressions and very simple colour sets. 
This model was primarily used to describe the flow of data, while the actual data 
manipulations were ignored. The objective of this phase was to generate a rapid 

Interbank_Rules 

Interday_Posts 

Intraday_Posts 

StarcoLDay_Positions 

Process_Systems 

Processing_Rules 

Manage 
Intraday 

Debt 
AO 

Model 

Scripts 

Records 

Relationship_Contact 

Fig. 14.3. Most abstract ePN view of electronic funds transfer system 



14.3 ePN Model of Electronic Funds Transfer System 197 

prototype of the application in order to validate the correctness of the initial 
SADT specification. We made this validation as early as possible to remove pos­
sible design errors. The validation was done in a meeting with the bank manag­
ers. During the meeting, the graphical properties of the simulation tool were 
used to demonstrate the model behaviour in terms of data flow and token col­
ours. Based on the meeting, the higher management in the bank decided to con­
tinue the development process. 

Next, the colour sets and arc expressions were made more detailed and a 
large number of more complex ML functions were declared, e.g., to search, 
sort, and merge lists of transactions. Figure 14.5 shows some of the colour sets 
used in the CPN model. They tell us that a transaction is modelled as a record 
with five fields. The first field contains a text string for unique identification of 
the transaction. The remaining fields specify the payment method, the amount to 
be transferred, the debtor account, and the creditor account. The colour set 
Transaction List contains lists of transactions. It is used to declare a large number 
of structurally equivalent colour sets (of which only three are shown). As dis­
cussed in Sect. 14.1, we could have used Transaction List as colour set for all the 
places that contain a list of transactions. Then we could have retained the arrow 
labels in the place names (instead of the colour set names). 

A typical example of a transition is shown in the upper part of Fig. 14.6. It 
shows how two lists of transactions, NotNettableActivities and NettedActivities, 
are merged and sorted into a single list of Sorted Activities. The merging is done 

I 
L~~ ........ _. __ ._ ._ --0-O~--- .. -~-i 

~ 

Fig. 14.4. ePN page for the SADT page in Fig. 14.2 



198 14 Electronic Funds Transfer System 

by means of the ML operator AA which concatenates two lists, while the sorting is 
done by means of the ML function Sort. In the early phases of our prototyping, 
it was not necessary to define the detailed sorting algorithm. Our focus was on 
the system architecture and validation of the interaction and data flow. Hence, we 
declared the Sort function in the following, trivial way: 

fun Sort (translist: TransactionList) = translist; 

Later the Sort function was elaborated to reflect a more realistic sorting of the 
list. To make it easy to experiment with different sorting algorithms, we then 
modified the transition as shown in the middle part of Fig. 14.6. The new in­
put/output place contains a token that specifies the desired sorting method. To 
change to a new method, it is sufficient to change the marking of the new place. 
This can be done either by means of the Change Marking command or when an 
initial configuration is read from a file. 

Later on, we modified the transition so that it got the format shown in the 
lower part of Fig. 14.6. Each arc expression is now a single variable. All the 
computation logic is moved to the code segment, which calculates the values of 
the output tokens from the values of the input tokens. As we shall see below, this 
format makes it very easy to translate the CPN model into stand-alone ML code. 

As soon as the different parts of the more detailed CPN model were finished, 
they were debugged by means of the CPN simulator. First we used the Change 
Marking and Bind commands to test a number of bindings for each individual 
transition. Then we made a number of manual simulations during which break­
points were used to investigate whether markings and enablings were as ex­
pected. The focus of the simulation was to test whether the overall logic of the 
simulation model matched the modellers' expectations, in terms of resource 
sharing, synchronisation, etc. Hence, we used very simple input data. Transaction 
lists were short or even empty. 

Now we were ready to start the detailed implementation of the new software 
application. At this stage we made a more detailed description of the data and the 
algorithms. Several databases were modelled, e.g., representing customer bal­
ances, network balances, and agreements on netting opportunities. In the earlier 
phases we had modelled the logic of the data flow. Now we modelled the detailed 

color PayMethod = with Book I ChipOut I FedOut I ChipIn I FedIn; 
color Transaction = record id: String * 

pm: Pay Method * 
am: Real * 
Debtld: String * 
CredId: String; 

color TransactionList = list Transaction; 
color Netted_Activities = TransactionList; 
color NoCNettable_Activities = TransactionList; 
color Sorted_Activities = TransactionList; 

Fig. 14.5. Excerpts of the colour set declarations for electronic funds transfer system 



14.3 ePN Model of Electronic Funds Transfer System 199 

data and the detailed data manipulations. During this phase the amount of ML 
code grew to nearly 1300 lines, while the size of the net structure was un­
changed. The validation of the final model was done by the bank's technical staff. 
This took one week, in which they performed a large number of extensive 
simulations. During this phase a serious design error in the SADT model was 
discovered. To fix the error it was necessary to modify both the SADT model 
and the CPN model. However, this took only three days, thanks to the flexibility 
and locality properties of the models. 

The main difference between the proto typing phases and the implementation 
phase was the volume and accuracy of the ML code. In the first part of the proj­
ect, the graphical interface of the tools was very important, and it was the 
graphical aspects of SADT and CP-nets that made it possible for the bank man­
agers to make their ideas concrete. However, later it turned out that the graphi­
cal interface became less important, while the actual data produced by the simu­
lations became more so. Now the simulation data became far too complex to be 

listl 

NoCNettable_Activities 

list2 

Netted_Activities 

listl 

Not_Nettable_Activities 

list2 

Netted_Activities 

listl 

Not_Nettable_Activities 

list2 

Netted_Activities 

Sequence 
Transactions f---_S_o_rt_('-li_st_l_AA_I_is_t2.:.-)--t~ 

A32 Sorted_Activities 

ModeCGuidelines 

Sort (listl AAlist2, Sequence 
Transactions f---_s_o_rt=--m_et_h_od-') __ ~ 

A32 Sorted_Activities 

Model_Guidelines 

Sequence 
list3 

Transactions f-----------~~O 

c A32 
Sorted_Activities 

input (listl,list2,sort_method); 
output list3; 
action 

Sort (listl~~list2,sort_method); 

Fig. 14.6. Three different versions of a ePN transition 



200 14 Electronic Funds Transfer System 

conveniently inspected as token colours. Instead we used files, which were read 
and written via code segments. 

At the time of our project the ePN simulator was rather new and it did not 
have all the facilities it has today. A crucial problem was the fact that there was 
no easy way to perform fast automatic simulations. It was possible to remove the 
updating of the different parts of the graphics. This made the simulations run 
somewhat faster. However, the entire simulation process was still controlled by 
the process in charge of the graphical interface. This process invoked the ML 
engine to execute one simulation step at a time. This simulator design made 
automatic simulations much slower than those we make today. To circumvent 
this problem we transformed the ePN model into stand-alone ML code. 

In the beginning we made the transformation manually. This was possible be­
cause our ePN model was rather atypical. Each transition is executed exactly 
once and this happens in a fixed order, which is totally independent of the input 
data. This makes it possible to remove the entire enabling calculation. Moreover, 
transitions have the form shown in the lower part of Fig. 14.6. This makes it 
possible to replace each transition with a simple ML statement. The ML state­
ment for the transition Sequence Activities in Fig. 14.6 is shown below. Between 
let and in we find the variables from the input part of the code segment. Between 
in and end we find the action part of the code segment. The scheme also works 
when the transition has more than one output place and when the code segment is 
more complex, e.g., contains side conditions in the form of file operations. 

val Sorted_Activities = 
let 

in 

vallist1 = NoCNettable_Activities; 
vallist2 = Netted_Activities; 
val sort_method = Model_Guidelines; 

Sort(listl AAlist2, sort_method) 
end 

To obtain a stand-alone ML program, we first mapped each transition into an 
ML statement of the form shown above. Then we concatenated the ML state­
ments, in the order in which the transitions were known to occur. 

With the stand-alone ML code we were able to execute a much larger number 
of transactions. A simulation with nearly 12000 transactions took less than 10 
minutes (on a Sun Sparc work station). Of this time, three minutes were used to 
read all input data from files, two minutes for the processing of the transactions, 
and four minutes to produce output files. The latter contain detailed information, 
e.g., about netting, sequencing, and exceptions. Of the output time, 50 seconds 
were spent writing the proposed script for the next transfer and writing the up­
dated position database. 

The experiments above taught us that ML code could be executed much faster 
than seen in the early versions of the ePN simulator. Based on this experience 
the ePN simulator was enhanced so that it became capable of totally automatic 
generation of stand-alone ML code, which is executed without any communica-



14.3 ePN Model of Electronic Funds Transfer System 201 

tion with the graphical parts of the CPN simulator. This kind of simulation is to­
day known as automatic simulation (earlier it was called super -automatic simula­
tion). It works for all kinds of CPN models, not just for models with the simple, 
atypical enabling structure used in the funds transfer project. 

14.4 Conclusions for Electronic Funds Transfer Project 

In this project we have demonstrated that the complete software life cycle can be 
supported using an integrated modelling approach, based on SADT, CPN, and 
Standard ML. This was done by performing a case study during which we devel­
oped a software application supporting a new strategy for control of electronic 
funds transfer. We developed semi-automatic transformations - from SADT to 
CPN and from CPN to ML. The transformation from CPN to ML is now part of 
the CPN simulator, where it is totally automatic. 

Our approach embodies several advances. Construction of executable models 
starts in the early specification and design phases. This means that the software 
developers acquire a detailed knowledge about the system to be built. A large 
number of errors and inconsistencies are removed at a very early stage. This re­
duces the cost of system development and maintenance. Changes can be tested 
quickly and at the desired level of detail. Enhanced applications can be generated 
within days. 

The different phases of system development use descriptions and languages 
that are closely related to each other. This reduces the time and manpower 
needed to move from specification to design and from design to final implemen­
tation. Their close relationship also ensures more consistency between the differ­
ent kinds of descriptions. 

The new control strategy, proposed by the two bank managers, seemed to be 
working as expected. The strategy was tested on historical bank data, using the 
ML code produced by the CPN simulator. However, at this stage the project was 
discontinued, primarily because some of the key persons left the banks. 



Chapter 15 

Bank Courier Network 

This chapter describes a project accomplished by Valerio O. Pinci, Meta Soft­
ware Corporation, Cambridge MA, USA, in cooperation with Shawmut National 
Cooperation, USA. The chapter is based upon the material presented in [43]. The 
project was conducted in 1992. 

We describe how CP-nets and the CPN tools were used to model and simulate 
the truck courier network of Shawmut National Corporation, which is the third 
largest bank in New England. The trucks feed the processing centres of the bank 
with checks from more than 300 branches located throughout Massachusetts, 
Connecticut, and Rhode Island. The objective of the modelling project is to op­
timise the truck delivery schedules so that checks are delivered just in time to 
keep the processing centres operating at maximum capacity. By using the CPN 
model, the bank reduced the number of trucks in the courier network and hence 
the cost of the overall operation. 

In the project we used Structured Analysis and Design Technique (SADT) to­
gether with CP-nets. This was done in a similar way as described in Chap. 14. 
We used the SADT tool to obtain a work flow description of the operations of 
the truck courier network. Then the SADT diagram was transformed into a 
timed CP-net. In this way we obtained a performance model that was utilised by 
analysts at the bank to study the impact of changes in the truck delivery schedules 
on the utilisation of staff and equipment at the check processing centres. Simula­
tion statistics were presented by means of business charts, providing an easy and 
straightforward way to compare the performance of different truck and staff 
schedules. 

Section 15.1 contains an introduction to the bank courier network and de­
scribes the organisation of the project. Section 15.2 presents the CPN model of 
the bank courier network, including the input files and output charts. Finally, 
Sect. 15.3 presents a number of findings and conclusions for the project. 



204 15 Bank Courier Network 

15.1 Introduction to Bank Courier Network 

In 1992 the Shawmut National Corporation decided to launch a pilot project to 
evaluate the usefulness of SADT and CP-nets to obtain performance models of 
selected parts of their bank operations. Shawmut's interest was triggered by the 
successful use of this modelling and simulation technique at Canadian Imperial 
Bank of Commerce (CIBC). In CIBC's case a simulation model was built of the 
check processing data centre, which happened to be spread over two different 
floors in the building. The general assumption was that the elevator constituted a 
serious bottleneck, and hence the choice was considered of either adding a second 
elevator or moving all the check processing operations to the same floor. Since 
both of these solutions would require costly investments, the management de­
cided to test the effects of these solutions by means of a simulation model. The 
results of the analysis were quite surprising. They show that the sorting opera­
tions is the main bottleneck, not the elevator. By changing the job allocations of 
the existing staff and making one more person available for sorting, the bank be­
came able to process an additional 95 000 checks per day, representing a 6.5% 
capacity increase. Adding one more elevator would have accomplished only a 
0.5% improvement of the capacity. 

As a pilot project Shawmut decided to model their courier network in which 
armoured trucks are used to transfer checks, mail, and cash from the branches to 
the main encoding sites where the checks are processed. The pilot project only 
involved the 130 branches in Massachusetts. For this area 30 trucks are used. 
Each day they deliver several hundred thousand checks to the main processing 
centre in Boston. At peak hours the centre has more than 40 staff members on 
duty. 

The pilot project was a success. The analysis of the simulation results allowed 
the bank to remove a truck and save $ 35 000 a year. In a second phase the rest 
of the branches are being added to the model to determine whether more trucks 
can be saved. It is also the plan to use the CPN model to adjust the route sched­
ules, when new branches are opened or existing branches closed. 

The pilot project was completed within 12 weeks of work by one modellerl 
analyst who had no previous experience with SADT or CP-nets but had very ex­
tensive knowledge of the operations of the encoding centre. The modeller was 
assisted by senior staff from Meta Software. This assistance was provided once a 
week for approximately half a day. The project time was used as follows: 

• three weeks to build the SADT model, including one week for review. 
• seven weeks to build the CPN model, including one week for review and four 

weeks for instrumentation (see below). 
• two weeks to simulate different scenarios, i.e., new truck and encoding staff 

schedules. 

The instrumentation created the ML code that read truck and staff schedules 
from files and the ML code to update the business charts used to display the 
simulation results. One reason for this phase taking a relatively long time is that 
it required more use of the Standard ML language - with which the Shawmut 



15.1 Introduction to Bank Courier Network 205 

modeller had no previous experience. In the reviews different parties were in­
volved, such as staff from Meta Software, from the branch offices, from the en­
coding centre, and from the courier company. 

The purpose of the simulation is to measure the impact of different truck and 
encoding staff schedules on the performance of the encoding centre. The model 
does not attempt to optimise the truck routes. This is done by the courier com­
pany based on the desired schedule. The encoding equipment imprints the dollar 
value in machine-readable form on the check with the aid of an operator. The 
functioning of the encoding centre depends upon the number of checks being de­
livered to it (i.e., the route schedules) and it also depends upon the available 
amount of processing capacity (i.e., the encoding staff schedules). The system 
performs optimally when no more checks arrive than are needed in order to 
keep all the encoding staff busy. If there are too many checks at the encoding 
site, money is wasted paying for unnecessary truck deliveries. If there are too 
few checks money is wasted paying for staff being idle because there are no 
checks to encode. 

15.2 CPN Model of Bank Courier Network 

To achieve its purpose, the simulation model must have detailed knowledge of 
the route schedules, the number of checks waiting for pick-up, staff schedules, 
and the available encoding staff/equipment. This information is read from files. 

A typical route schedule is shown below. It tells us that truck no. 4 is sup­
posed to start in Boston at 7:45, visit branch B483 at 8:20, branch B488 at 9:10, 
etc. At 11 :05 the truck returns to the main check processing centre in Boston. 
The complete input file contains 31 route schedules. The file was created by the 
Shawmut analyst, based on the existing schedules provided by the courier com­
pany. 

.-~-----... -.---------. - ... ----.-.-~-.. _. 

Route Time Type Location 
-~----.---,-------~--.---------... -

4 7:45 Start Boston '[ 
8:20 Branch B483 

9: 10 Branch B488 I 

11:00 

11:05 

12:10 

Branch 

To Main 
Branch 

B469 

Boston 

B483 

A typical branch schedule is shown below. It tells us that a truck at 8:20 is ex­
pected to fetch 360 checks, no mail, and some ATM items (cash from deposits at 
the automatic teller machines) at branch B483. The complete input file has ap­
proximately 130 branch schedules, each representing an average day of branch 
activity. The file was created by means of a data base package used at the bank to 



206 15 Bank Courier Network 

track down how many items were found at the branch when the pick-up took 
place. 

Branch Time Checks 

B483 8:20 360 
12:10 620 

Mail 

No 
Yes 

ATM 

Yes 
Yes 

A typical encoding staff schedule is shown below. It tells us that the main check 
processing centre in Boston has no staff allocated for encoding from 11 :00 to 
12:00, while two persons are working with pre-encoding. In the pilot project 
there was only one encoding centre. Later on, two more will be added. 

50000 

45000 

40000 

35000 

30000 

25000 

20000 

15000 

10000 

5000 

Location Time Encoding Pre-encoding 

Boston 11 :00 0 2 

Number of Checks 

12:00 
13:00 

r--
~ 

~~ 

4 

j ____ r--r-

2 

3 

Cl Too Many Checks 

• Too Few Checks 

§ Processing Capacity 

----OJ 

o time 
10:00 11:36 13:12 14:48 16:24 18:00 19:36 21:12 22:48 24:24 

Fig. 15.1. Output chart showing the flow of checks 



15.2 CPN Model of Bank Courier Network 207 

The simulation produces the graphical output shown in Figs. 15.1 and 15.2. 
The first graph shows the state of the check processing centre. The dashed curve 
(with zebra-striped nodes) represents the processing capacity of the encoding 
centre. The other curves represent the amount of check overflow (white boxes) 
and check underflow (black boxes). The chart shows that there is no processing 
capacity available until just before 12:00. In spite of this fact, checks are being 
delivered at the encoding centre starting shortly after 10:00 and the graph shows 
a large accumulation of unprocessed checks. Then the processing capacity grows, 
but not enough to keep up with the stream of incoming checks. Just before 18:00 
the picture changes. From this point on the check overflow curve drops dramati­
cally, telling us that there is now enough capacity to process the incoming checks 
and also to reduce the backlog, which finally is removed just after 19:36. Then 
there is more than one hour with unused processing capacity before another 
overflow period starts. The graph suggests that some of the early deliveries can 
be eliminated without reducing the efficiency of the check processing centre. 
Also changes in the staff allocation may improve the performance of the opera­
tion. For example, the encoding staff could be reduced earlier than 21:00, re­
sulting in less unused capacity (and in later completion). 

6:15 
6:45 
7:15 
7:45 
8:15 
8:45 
9:15 
9:45 

10:15 
10:45 
11 :15 
11 :45 
12: 15 
12:45 
13:15 
13:45 
14: 15 
14:45 
15: 15 
15:45 
16:15 
16:45 
17:15 
17:45 
18: 15 
18:45 
19:15 
19:45 

. ToBo ton 
n From Boston 

To Branch 
ImTo Hub 

~To Hub xchange 
.To Place Branch 
O To Exch Branch 

Fig. 15.2. Output chart showing the use of trucks 

4 
5 
8 

13 
20 
23 
24 
24 
26 
28 
28 
30 
30 
29 
29 
29 
29 
29 
27 
25 
18 
14 
13 
9 
8 
4 
3 
I 



208 15 Bank Courier Network 

The second graph, Fig. 15.2, displays infonnation about the use of trucks. At 
6:15 there are a total of four trucks. Two have just left Boston, one is headed 
towards a branch, and one towards a hub (i.e., a branch with a check sorting fa­
cility). The graph can be used to improve the route schedules. For example, one 
might wonder why there are trips back to Boston (i.e., to the encoding centre) 
long before any processing capacity is available. Looking at Fig. 15.1 gives rise 
to more puzzlement - there are no signs of checks being delivered so early. The 
explanation is that these early trips are primarily made to accommodate internal 
mail distribution. By investigating different route schedules, we can evaluate, 
e.g., how expensive this mail service is. 

The first model for the courier network was created in SADT. Then the 
SADT model was translated into the net structure of a CP-net using the tools and 
techniques described in Sect. 14.1. Compared to many of the other models pre­
sented in this book, the courier network model is small and simple. The most ab­
stract CPN page is shown in Fig. 15.3, while a more detailed view is presented in 
Fig. 15.4. 

From Fig. 15.3 we see that the courier network removes Sorted Mail and 
Loads (i.e., Checks, Mail, and ATM items) from the branches (represented by 
the input places to the left) and delivers the same kinds of items to the encoding 
centre (represented by the output places to the right). A Route Schedule is used to 
detennine in which order the branches are serviced. Trucks are used for the 
physical flow from the branches to the encoding centre. Sorting Rooms are used 
to temporarily store checks before they are taken to the encoding centre. Trou­
ble Reports may be generated when for example a truck fails to meet another 
truck at an exchange place. Under those circumstances an Adjustment to Schedule 
must be requested from the person responsible for the operations at the courier 
company. 

On Fig. 15.4 we find the same inputs, outputs, controls, and mechanisms (i.e., 
resources). They are input and output ports, but we have hidden the port tags, 
because they are redundant with the SADT naming conventions (where 
I '" Inputs, a '" Outputs, C '" Controls, and M '" Mechanisms). In Fig. 15.4 

Route_Schedule Adjustment_to _Schedule 

Checks 

Trouble_Reports 

Trucks Sorting_Rooms 

Fig. 15.3. Most abstract CPN view of bank courier network 



15.2 CPN Model of Bank Courier Network 209 

we also see the main activities of the trucks. The Route Schedules determine the 
order in which these activities take place. Some trucks start by Driving to Central 
Mail Room. Then they Drive to Hubs or Drive to Branches, and finally they Drive 
to Processing Centre. Some of the places and arcs in Fig. 15.4 are dashed. This 
indicates that they were removed from the CPN model, although they existed in 
the original SADT model. Removing places C2 and 03 means that the CPN 
model does not generate Trouble Reports and does not wait for Adjustment to 
Schedules. This was not considered essential in order to capture the nature of the 
courier network operation. Hence, it was omitted in the pilot project. The re­
maining five dashed places (without names) were used to represent the various 
items carried by the trucks (i.e., Checks, Mail, and ATM items). However, as we 
shall see below, this information is much more adequately kept in the colours of 
the tokens representing the individual trucks. 

Now let us consider Fig. 15.5, which shows some of the colour sets used in 
the CPN model. They are fairly self-explanatory. For efficiency we have chosen 
to model all trucks by a single token of colour Trucks instead of having a large 
number of Truck tokens. Analogously, we model all the possible truck loads (of 
checks, mail, and ATM items) by a single token of colour Loads instead of hav­
ing a large number of Load tokens. With the new simulator, described in Chap. 
4, it would no longer be necessary to use lists. 

Route_Schedule Adjustment_to_Schedule 

Drive to Central 
Mail Room. 

(ei\ 
"r/ 

Pick·up Mail and Sorted_Mail 
Empty Bags 

AI 

Sorting 
Activities -~ Mail 

A2 I''.i" 

'---r--r--' \'1) 

I,_{, Branch, Deliver ~~~~~~~~~~ -----------

Trouble_Reports 

-------------!>(03'\ 
"-_/' 

12 }----+----t---t--t-----+i 
Loads 

Ml 

Trucks 

M2 

Loads 

-C',}----­

Loads 

Sorting_Rooms 

A3 ;':( Loads 
I ' 

'~r' ,.---L----, Drive to 
I Processing 
'-f- Centre and 

Checks 

Deliver Items 

'---r---r""A4;...J ATM_Mail 

Fig. 15.4. More detailed CPN page for bank courier network 



210 15 Bank Courier Network 

With the colour set declarations in Fig. 15.5, the route schedule from Sect. 
15.2 looks as shown below (hours and minutes are converted into minutes). No­
tice that the time stamp indicates the time for the first stop (which in this case 
actually is a start). When a stop has been serviced, it is removed from the list and 
the time stamp of the token is updated to match the time of the next stop. 

(4, [ {time=465, kind = Start, 10c="Boston"}, 

{ time = 500, kind = Branch, loc = "B483" }, 

{time=550, kind = Branch, loc="B488"}, ...... ]) @ 465 

The net structure in Fig. 15.4 is automatically derived from the SADT diagram. 
The only thing the modeller has to do manually is to delete the dashed places and 
arcs (which can be done by a single editor operation). Now let us discuss how the 
net structure is augmented with net inscriptions, i.e., arc expressions, guards, 
and time expressions. 

To illustrate this, we consider transition A3 in Fig. 15.4. The transition has 
three input arcs (from 12, Cl, and Ml) and no output arcs. The final version of 
the transition is shown in Fig. 15.6, and here we notice that each of the three in­
put arcs now has a matching output arc. This is due to the fact that the CPN 
model is constructed in such a way that most places always contain the same 
number of tokens. This way of modelling may seem a bit strange for CPN peo­
ple, but it is quite natural for SADT people who usually consider the inputs of an 
activity to be persistent material that can be used by several activities without de­
stroying it. Now let us consider the net inscriptions in more detail: 

• Place I2 has a single token of colour set Loads. It is a list with an element for 
each branch. The element tells us how many Checks the branch has and 
whether there is any Mail or ATM. 

• Place Ml has a single token of colour set Trucks. It is a list with an element 
for each truck. The element tells us the identity of the truck, how many 
Checks the truck has, and whether there are any Mail and ATM. 

color Kind = with ToMain I Hub I Branch I FromMain I Start; 
color Location = string; 
color Stop = record Time: TIME * kind: Kind * loc: Location; 
color Route = list Stop; 
color Truckld = int; 
color Route_Schedule = product Truckld * Route timed; 
color Checks = int; 
color Mail = bool; 
color A TM = bool; 
color Truck = product Truckld * Checks * Mail * ATM; 
color Trucks = list Truck; 
color Load = product Location * Checks * Mail * A TM; 
color Loads = list Load; 

Fig. 15.5. Excerpts of the colour set declarations for bank courier network 



15.2 CPN Model of Bank Courier Network 211 

• Place Cl has a token for each operating truck. The token is of colour set 
Route_Schedule. It is a pair where the first element is a Truckld while the sec­
ond element is a list of Stops. The colour set is timed. This means that each to­
ken carries a time stamp indicating the time for the next stop. 

From the arc expression on the input arc from Cl, we see that the transition is 
only enabled when Cl contains a token for which the next stop is of kind Branch. 
When this is the case, the transition occurs at the time indicated by the time 
stamp of the token. The rest of the RouteSchedule is returned to Cl (unless 
empty) with a time stamp equal to the time of the next stop (which is found by 
using the record selector # Time on the head of rest). The load of the truck in­
volved and the load of the branch involved are determined by means of the ML 
functions TruckLoad and BranchLoad (in the guard) and updated by means of 
the ML functions Update Trucks and Update Loads (in the output arc expres­
sions). These ML functions are straightforward. Each of them searches through 
a list (specified by the first parameter) and reads/updates the list item that 
matches a given truckibranch (specified by the second parameter). 

I2 

(truck, 
{Time=t, 

Route_Schedule 

Cl 

if rest <> [ ] 
kind = Branch, 
loc=branch} :: rest) 

then l' ( truck, rest) 
else empty 

[(cl,ml,al) = TruckLoad (trucks, truck), 
(c2,m2,a2) = BranchLoad (loads, branch)] 

Drive to Next 
loads Branch, Deliver 

-t----------------------- and Pick-up 
Loads UpdateLoads (loads, branch) 

c A3 

@+ #Time (hd rest) - timeO 

trucks UpdateTrucks (trucks, 
(truck, c 1 +c2, 

Ml 

Trucks 

ml andalso m2, 
al andalso a2)) 

Fig. 15.6. Detailed look at one of the transitions in Fig. 15.4 



212 15 Bank Courier Network 

15.3 Conclusions for Bank Courier Network Project 

In this chapter we have presented the successful use of SADT and CP-nets for 
modelling and simulating a truck courier network servicing a large US bank. As 
a result of the pilot project the bank has improved the route schedules to obtain a 
$ 35 000 cost reduction per year. Additional savings are expected as the model is 
extended to cover all branches. 

As a result of the successful pilot project, the management of the bank de­
cided to initiate a larger modelling project covering the entire encoding opera­
tions. The project is intended to analyse the impact of the new imaging technol­
ogy and to optimise its use. The project group consists of three persons who 
work with the construction and use of SADT and CPN models. At the same time, 
more opportunities for modelling and simulation are being identified in the retail 
branch network. 

We have performed a number of projects for commercial customers, such as 
Shawmut Corporation and Canadian Imperial Bank of Commerce. Based on 
these experiences, we believe that the combined use of SADT and CP-nets pro­
vides a useful and efficient platform for business reengineering, i.e., optimisa­
tion of work flows, courier networks, etc. SADT provides easy-to-do and easy­
to-read process descriptions in a graphical language which is already familiar to 
many system analysts. The SADT models are translated into CPN models and in 
this way the analysts get access to the simulation power of CP-nets. In our proj­
ect the net structure was obtained automatically, while the net inscriptions were 
added manually. 



Chapter 16 

Network Management System 

This chapter describes a project accomplished by S¢ren Christensen, Aarhus 
University, Denmark, and Leif O. Jepsen, RC International AlS, Aarhus, Den­
mark. The chapter is based upon the material presented in [13]. The project was 
conducted in 1990. 

We present a project where CP-nets were used for the detailed design and 
specification of a software module for the network management system of a 
European wide area network. The module was designed using the CPN tools, in 
particular the CPN editor and the CPN simulator. Furthermore, place invariant 
techniques were used to verify properties of the software module. 

The resulting CPN model was used as basis for the implementation of the 
software module. The implementation language was a variant of Pascal called 
Real Time Pascal. It includes facilities for concurrent processes, mailbox han­
dling, and buffers for communication between processes. The implementation 
and test phases followed standard development procedures and the module is now 
a running component of the network nodes. 

The model was also used to evaluate the design proposal. An experienced de­
veloper without knowledge of CP-nets had less than an hour of informal intro­
duction. After this he was able to understand the CP-net model and to give quali­
fied feedback in the form of proposals for changes to the model. 

The use of CP-nets and the CPN tools was a success. The implementation of 
the module was fast, it was easy to extend it afterwards, and only a few bugs 
were found in the test phase. The use of CP-nets in the design phase contributed 
to the development of a better product using fewer resources. 

Section 16.1 contains an introduction to the network management system and 
the project organisation. Section 16.2 presents the CPN model of the network 
management system. Section 16.3 discusses how we used simulation and place in­
variants to validate and verify our design model. Finally, Sect. 16.4 presents a 
number of findings and conclusions for the project. 



214 16 Network Management System 

16.1 Introduction to Network Management System 

The project was part of a large software development project carried out by RC 
International. The aim of the total project was to develop the RcP AX X.25 wide 
area network to provide the International X.25 Infrastructure Service which 
spans 19 countries in Europe and connects 20 private and 11 public X.25 net­
works. 

The RcP AX network consists of a number of network nodes handling access 
traffic to/from users of the network and transit traffic internally in the network. 
The Network Management System (NMS) enables operators at the Network 
Management Centre (NMC) to monitor and control all modules of the total net­
work. The NMS is a distributed application which is an integrated part of all 
network nodes. Figure 16.1 shows a schematic overview of the network. 

Each network node has a software module that handles the communication 
between the NMC and the different software modules local to the network node. 
At the basic level, the NMS works with three kinds of messages: the NMC can 
issue a request to a specific software module, the request will trigger an answer 
which is sent back to the NMC, and finally information on events at the network 
nodes will be sent to the NMC. 

The structure of the individual network nodes is shown in Fig. 16.2. Each 
node is a single machine with a management board and a number of transputer 
boards. The latter are used for all the software responsible for access and transit 
traffic. The local management system represents each software module as a Lo­
cal Control Probe (LCP). The management board runs the Network Control 
Probe (NCP) which is responsible for communication to the NMC. The function 
of the Sub NCP (SNCP) and the LCP adaptor is to connect the LCPs with the 
NCP across a local bus, called the Link Bus. 

CP-nets were used to design the SNCP module. A detailed model of the in­
tended behaviour of the SNCP was made. More rudimentary descriptions of the 

Fig. 16.1. Simplified overview of the network 



16.1 Introduction to Network Management System 215 

behaviour of the LCPs and the LCP adaptor were added as an environment for 
simulating the behaviour of the SNCP module. The complete development of the 
SNCP module was accomplished in four phases using the following amount of 
man-weeks: 

• Analysis: 4 
• Design: 2 + 2 
• Implementation: 2 
• Testing: 2 

The analysis phase was performed without the use of CP-nets. It produced a con­
ventional textual specification of the protocol connecting the LCPs with the 
SNCP. The set of protocol services includes connect, disconnect, send event, re­
ceive request, and send answer. A similar textual specification of another proto­
col connecting the SNCP with the LCP adaptor was made in another subproject. 

For each service in the two protocols the typical use was illustrated in a mes­
sage sequence chart like the one shown in Fig. 16.3. It describes how a new LCP 
informs the NMC about its existence. First the LCP sends a connect lcp to the 
SNCP which sends an lcp init to the LCP adaptor. The reply is either an lcp 

Transputer 
Board 

Link Bus 

Management 
Board 

Fig. 16.2. Structure of a single network node 



216 16 Network Management System 

initnotdone or an lcp init done. It is important to notice that a message sequence 
chart only specifies a single typical sequence of protocol events. If error han­
dling should be documented, it would be necessary to create a significant number 
of additional message sequence charts. It is also difficult to describe how inter­
leaved event sequences are handled, e.g., the situation where a request for the 
LCP is received before the connect lcp answer is returned. 

The task of the next phase was to design the SNCP module according to the 
specification of the two protocols. Although the functions of the module were 
well understood, this was a complex task: 

• The SNCP should handle the communication with the LCP adaptor on another 
CPU board (including retransmission of lost messages, acknowledgements, 
etc.). 

• The SNCP should handle all the LCPs and the LCP adaptor in parallel. 
• Error situations and their corresponding actions should be identified. 

The complexity of the design problem implied a need to work on the control 
structure and the internal state of the SNCP module - without going into too 
much implementation detail. This was the original motivation for the use of 
CP-nets. The CPN editor was used to develop the detailed design of the control 
structure and the internal state of the SNCP module. Furthermore, a rudimen­
tary description of the surrounding components was added to provide an envi­
ronment making it possible to evaluate both the internal and external behaviour 
of the SNCP. 

The project was carried out by two persons. One of these, the modeller, was a 
software developer at RC International. He was responsible for the development 
of the SNCP module, and he took the initiative to use CP-nets, but had no prior 
experience of using Petri nets for modelling. The other person was an experi­
enced user of the CPN tools. His primary task was to assist the modeller using 
the tool and to discuss how CP-nets could be best used to model the system. 
Learning to use the tool was part of the design phase. We estimate that this took 
two of the four man-weeks used in this phase. 

LCP SNCP LCP adaptor 

connect Icp Icp init 
"- "-

Failure 
connect Icp not done Icp init not done 

/1 

" " " 

connect Icp done Icp init done 
/1 

" 

r 
" 

wait message 
"-

Success 

v 

LCP/SNCP SNCP I LCP adaptor 
protocol protocol 

Fig. 16.3. Message sequence chart specifying a typical sequence of messages 



16.2 ePN Model of Network Management System 217 

16.2 CPN Model of Network Management System 

The aim of the modelling phase was to design the control structure and internal 
status information of the SNCP module. The starting point of the design was the 
textual protocol specifications made in the analysis phase. 

We modelled the system in a top-down manner. The most abstract level of the 
CPN model is shown in Fig. 16.4. It illustrates the different hardware compo-

LEMBUF .-----
Return LCP )4------------.. 

[] 

Fig. 16.4. Most abstract ePN view of network management system 



218 16 Network Management System 

nents of a single network node, and hence it resembles Fig. 16.2. However, there 
are a few differences: 

• The Link Bus is now explicitly represented as an active component. This is 
necessary because we want to be able to model transmission errors between the 
management board and the transputer boards. 

• When modelling the environment of the SNCP, we did not need to distinguish 
between the LCP adaptor and the NCP. Hence, we have represented the Man­
agement Board by a single substitution transition. 

• The LCPs are modelled by three substitution transitions: LCP 1, LCP2, and 
LCP3. They all use the same subpage, and each of them has a socket place with 
a token representing the identity of the LCP. 

• A number of mailboxes have been added. This is done because we knew that 
the implementation would be done by means of a language that supports com­
munication by means of mailboxes. 

Since our main interest was to design the SNCP, we started out by describing this 
module. The most abstract view is shown in Fig. 16.5. It has one ordinary tran­
sition Initialise and two substitution transitions Get Next Operation and Process 
Operation. Thick arcs are used for control structure while thin arcs indicate data 
access. 

LEMBUF 

~ 
~ 

LBUF 

....... __ ---l@ 

Fig. 16.5. Most abstract CPN page for the SNCP process 



16.2 ePN Model of Network Management System 219 

The subpage of Get Next Operation is shown in Fig. 16.6. For readability, we 
have included the declarations of the colour sets (they would usually be collected 
in a declaration node). When a token arrives at place id16finished, the colour of 
it specifies whether the internal mailbox id16 mbx should be checked or not. The 
check is done by the transition Checkid16 which inspects the list lb. If the list is 
empty an e-token is positioned on place wait main. Otherwise an e-token is posi­
tioned on place waitid16. This means that transition Next Waiting Operation will 
only occur when at least one buffer is present in id16 mbx. The other mailbox 
main mbx is not checked before it is accessed. This means that the system may 
have to perform an idle wait (with a token in wait main) until a buffer arrives at 
mainmbx. 

From the initial specification of the two protocols it was known what infor­
mation the individual protocol messages should contain. From this it was easy to 
declare the colour set BUF shown in the lower right part of Fig. 16.6. Note that 

e 

Ib 

e 
b::lb 

Ib 

i~~!~O~UF~ 
11111111: oper : EMPE * 

"", : Icp_id : LCPID • 
result: INT' 
return_mbx : RETURN_MBX • 
pushed_but: PUSHBUF 

Fig. 16.6. ePN page for Get Next Operation 



220 16 Network Management System 

the CPN representation of a message buffer is more abstract than in the initial 
specification. The colour set simply describes the different kinds of data needed, 
without specifying how the individual data elements are located in the message 
buffer. A message buffer is a record with five different fields, of which the first 
field specifies the operation type, while the other four fields specify different 
kinds of message data, e.g., the identity of the LCP involved. 

The page hierarchy of the CPN model is shown in Fig. 16.7. From this it can 
be seen that the page representing Process Operation contains twelve substitution 
transitions, one for each operation in the SNCP module. The CPN tools allowed 
us to model and simulate each of these operations in full detail before the rest of 

Prime 
'----;---/ 

Fig. 16.7. Page hierarchy for network management system 



16.2 ePN Model of Network Management System 221 

the design was done. The first operation we designed was connect lcp, which is 
represented by the page em connect (operations in the SLCP/SNCP protocol are 
prefixed with em, while operations in the other protocol are prefixed with ad). 
The experience from modelling and simulation of the em connect page was then 
used in the design of the remaining operations. We have structured the CPN 
model in such a way that each page could be implemented later as a separate 
process/procedure. 

The CPN model allowed us to analyse the data needed to implement the SNCP 
module and to evaluate whether the data should be local or global. When we 
started the modelling we expected to have relatively complex information on the 
internal state of the individual LCPs, but during the modelling it turned out that 
much less information was needed. Thus the explicit modelling of internal state 
information led to a simpler representation in the final program. 

The CPN model was used as basis for the implementation. It turned out to be 
rather straightforward to transform a CPN page into a process/procedure of the 
implementation language. To see how this was done consider Fig. 1.8, which 
shows the Real Time Pascal code that implements the CPN page in Fig. 16.6. 

In our case, one of the details we omitted was the concrete representation of 
buffers and data in the implementation. This meant that we did not model the 
different aspects of data conversion between the data representation of the 
transputer boards and the management board. We could omit these details with­
out losing information necessary for designing the program structure and the 
internal state of the SNCP module. 

if id16.finished 
then 

if open(id16.waiting_em) 
then 

wait(nexCopr, id16. waiting_em) 
else 

wait(nexCopr, main_mbx") 
else 

wait(nexCopr, main_mbx") 

Fig. 16.8. Implementation of Get Next Operation 

16.3 Validation of Network Management System 

To be able to perform realistic simulations of the CPN model, we included an 
environment with a rudimentary description of the LCPs, the LCP adaptor and 
the NMC. It is essential that the description of the environment can be much 
more rudimentary and fragmented than the rest of the model. Otherwise it 
would not be possible, in practice, to simulate models of systems that have a 
complex environment. 



222 16 Network Management System 

Simulation is a very efficient way to debug a model. It is a powerful way to 
gain insight in the behaviour of the system and it greatly enhances the chance of 
obtaining a consistent and error-free model/specification. The CPN simulator 
provides the same kind of facilities as a good debugger: 

• During the simulation, it is possible to investigate all details of the model, e.g., 
the current state and the possible actions. 

• The user can make an interactive simulation in which he single-steps through 
an interesting action sequence. He can observe the possible conflicts/choices 
and resolve them as he wants. 

• The user can make fast automatic runs in which the actions that occur are ran-
domly selected. 

• Interactive and automatic simulations can be mixed. 

The CPN simulator makes it possible to follow the simulation directly on the 
graphical representation of the CPN model. The states of the various system 
parts are shown as tokens and the possible actions are shown as enabled transi­
tions. The locality of the CPN transitions makes it easy to see why a transition is 
enabled and what effect it will have. This is in contrast to simulation/debugging 
of a program written in a textual programming language. There it is often cum­
bersome to follow the details of an execution, because the representation of data 
is separated from the representation of program instructions. 

During the design process, different kinds of simulations were performed. At 
first only a small submodel was available and we were in full control of the 
simulation - we chose the transitions we wanted to occur next. Later we started 
to simulate more automatically, triggering an automatic run by specifying an in­
put message from an LCP and/or from the NMC. The results were compared 
with the message sequence charts from the initial protocol specification (such as 
Fig. 16.3). 

During the simulations we discovered a number of errors in our model, and 
especially at first we had to remodel parts of the system. The errors can be di­
vided into the following categories: 

• Erroneous or insufficient tests before services were performed, 
• Disappearing buffers, 
• Parts of the model not being specified in sufficient detail, 
• References to missing parts of the model. 

The simulations allowed us to remove a considerable number of bugs before the 
implementation started. Moreover, the simulations gave us a much more detailed 
insight into the dynamics of the system. This allowed us to improve and simplify 
the design. Similar results can often be obtained by means of prototypes. How­
ever, this project involved both hardware and software development, and hence 
it would be difficult to build a prototype until late in the project. Building an 
early CPN model was much easier and more sensible, because we could evaluate 
the behaviour of the designed software using a crude and abstract description of 
the hardware with which it was supposed to work. 



16.3 Validation of Network Management System 223 

When our project took place, there was no tool support for verification of 
complex CP-nets. Hence, we were unable to use occurrence graphs. However, we 
did verify a few dynamic properties by means of manual place invariant analysis. 

An important property of the management of the buffers in our system is that 
they do not disappear. This was expressed as a place invariant. For each place 
representing buffers, we used a weight that mapped each buffer into an e-token. 
This was slightly more complex than it sounds, because our model contains lists 
of buffers and also buffers which are "pushed" on top of other buffers. For all 
non-buffer places, the tokens were ignored (i.e., mapped into the empty 
multi-set). By manually inspecting the individual transitions, we convinced our­
selves that the invariant was satisfied, i.e., that no buffers were created or disap­
peared. 

We also used place invariants to prove that the system contained all the in­
formation needed to re-establish the contents of a buffer, if the contents got lost 
during transmission at the Link Bus. To prove this property of the system, it was 
necessary to make small extensions to the CPN model. The extensions allowed us 
to compare the information that was lost with the information that was re­
established. 

Our verification of the two properties mentioned above would have been 
faster and much more reliable, had we been able to use the kind of invariant 
checking tool described in Sect. 4.4 of Vol. 2. However, this tool did not exist at 
that time. The right tool support would also have made it possible to use the 
verification as an integrated part of the modelling, instead of using it when the 
model was finished. Early use of place invariants could have been a valuable 
supplement to the simulations we performed. 

16.4 Conclusions for Network Management Project 

The use of CP-nets to design the SNCP software module was a success. The im­
plementation of the module was fast, it was easy to extend it afterwards, and only 
a few bugs were found in the test phase. The use of CP-nets in the design phase 
contributed to the development of a better product using fewer resources. 

It is hard to test programs distributed on special-purpose hardware in a wide 
area network. It is difficult to create adequate debugging environments and this 
makes it even more important to validate and verify the detailed design of new 
programs. An alternative of using CP-nets for modelling and simulation could be 
a prototyping approach. But in our case the module should exist in an environ­
ment where different pieces of hardware and software are being developed in 
parallel to the module. Hence prototyping would be difficult and could only be 
used late in the development process. 

If we compare the project to experiences from similar projects, it seems that 
the design phase was slightly more time-consuming while the implementation 
was faster. 



Chapter 17 

Naval Vessel 

This chapter describes a project accomplished by Jean Berger and Luc Lamon­
tagne, Defence Research Establishment Valcartier, Quebec, Canada. The chapter 
is based upon the material presented in [6]. The project was conducted in 1992. 

Recently, Petri-net technology has been used to tackle different aspects of 
command and control problems. In most cases, the objective was to assess and 
compare organizational structures, and various cooperation and coordination 
mechanisms. Our aim is slightly different. We describe how CP-nets and the 
CPN tools were used to model and investigate a conceptual naval vessel. The 
CPN model represents the behaviour and real-time aspects of critical system 
components. It is used to assess the performance of different decision policies for 
weapon assignment. We explore the feasibility of CP-nets for providing a proper 
framework and a suitable simulation environment to model command and con­
trol systems and study related centralised decision-making strategies. An evolu­
tionary approach, in which we iteratively refined the granularity of the model 
for each system component, has been followed. We apply modular development, 
independent subnet testing, partial and progressive integration, and simulation. 
The hierarchical structure of CPN models played a key role in the whole system 
development process, supporting an incremental "build a little, test a little" ap­
proach. 

Section 17.1 contains an introduction to the naval vessel. Section 17.2 presents 
the CPN model of the naval vessel. Section 17.3 describes the simulation results 
for two different weapon assignment policies. Finally, Sect. 17.4 presents a 
number of findings and conclusions for the project. Here we compare the CPN 
approach with an object-oriented simulation environment developed at our re­
search centre. 



226 17 Naval Vessel 

17.1 Introduction to Naval Vessel 

The main components of the naval command and control system are shown in 
Fig. 17.1. The system has seven main entities: threats, sensors, weapons, fire 
control radars, track manager, action manager, and battle manager. The arrows 
indicate different kinds of messages being passed between the various entities. 
Some of the message labels are self-explanatory while others have a more techni­
cal meaning - which hopefully will become clearer when we consider some of 
the pages of the CPN model. 

The Threats represent hostile anti-ship missiles. Each missile is assumed to 
have a deterministic behaviour, i.e., to follow a predetermined trajectory. 
Threats are periodically detected by Sensors responsible for data gathering and 
track generation. The information is sent to the Track Manager which is respon­
sible for track processing and data fusion, e.g., integration of data from mUltiple 
sensors. The number of tracks obtained corresponds to the number of Threats 
observed. When a new set of track data is obtained, a new Track Evaluation and 
Weapon Assignment (TEWA) cycle is started. 

Environment 

System 
New Scan Threat Report 

Track 
Processing 

Resource 
Report 

Track Drop 
Track Update 

Threat Report 

Kill 
Assessment 

Update 

Break Engaged 
Fire Control 
Radar 

Engagement 
Order 

Unexpected 
Change 

KiII 
Assessment 

Acquisition 

Fig. 17.1. Main components of the naval command and control system 



17.1 Introduction to Naval Vessel 227 

The Battle Manager represents the command and control decision-making 
process responsible for the overall planning task. This process evaluates the 
threat level and determines suitable responses to attacks by selecting the neces­
sary Weapons and Fire Control Radars. As a result, orders are sent to the 
Action Manager which executes them and provides the Battle Manager with feed­
back information as the situation unfolds. The ActionManager supervises the 
various tasks leading to the actual weapon deployment. The actual plan execution 
is performed by Weapons and by Fire Control Radars. They provide the Action 
Manager with a feedback, e.g., in the form of a kill assessment. 

17.2 ePN Model of Naval Vessel 

In this section we present the timed CP model of the defence system in Fig. 17.1. 
The most abstract view of the CPN model is shown in Fig. 17.2. It has a substi­
tution transition for each of the seven main system entities. The Projec­
tile/Missile node in the upper right corner is an auxiliary node (and has no col­
our set). This indicates that the actual deployment of missiles towards the Threats 
is not part of the CPN model. Altogether the CPN model consists of 30 pages: 

• One page for declarations, two pages for initialisation and termination, and 
one page for the overview presented in Fig. 17.2. 

• Two pages for Threats, one page for Sensors, one page for TrackManager, 
five pages for Weapons, six pages for Fire Control Radars, three pages for 
AttackManager, and eight pages for Battle Manager. 

Figures 17.3-17.6 show the most abstract pages for Sensors, TrackManager, 
BattleManager, and Weapons, respectively. Most of the other pages have a simi­
lar layout and a similar level of detail. More information about the CPN model 
can be found in [5] and [22]. 

To make the CPN model more readable, each page is divided into three parts. 
The left-hand part contains places used to represent the different states (i.e., 
modes) of the modelled entity. As an example, the three places in the upper left 
part of Fig. 17.3 tell us that the hardware component of the Sensors entity can be 
in three different modes: Idle, Emitting, and Receiving. The central part of the 
pages contains the actions to be executed by the entity, and the right-hand part 
contains the port places through which inputs are received and outputs delivered. 
The places in the central and right-hand parts use three different kinds of lines. 
Places with a full, unbroken line represent entity data while those with a dashed 
line represent messages. Finally, there are a few places with dotted lines. They 
are used for simulation management and conflict resolution. As usual, FO-tags 
identify places that are members of global fusion sets, while In-, Out-, and 
I/O-tags identify port places. 

Transitions represent the actions of the various entities. Time delays are 
specified to describe the duration of actions (see, e.g., the arc expression in the 
lower left corner of the Sensing Mode box in Fig. 17.3). As usual, C-tags indi­
cate the existence of a code segment, while HS-tags identify substitution transi­
tions. 



~
 

~
.
 .... -.

J ~
 s:: o ~
 

~
 

'" ::r ~ (
)
 

~ <
 

(i
i' ~
 

o ....,
 

::s
 ~ eo.
 

;g '" 11 

r
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
I I I 

E
n

vi
ro

n
m

en
t 

_
_

_
 _

 
: 

1
/
 In

ci
d

en
t 
'\

. 
i-

--
--

--
--

--
--

--
--

--
"

 
W

av
e 

/1
 -

-
-
-
-
-

Sy
st

em
 

U
N

IT
 

D
E

T
E

C
T

IO
N

_S
E

T
 

N
ew

 
T

ra
ck

s 

T
R

A
C

K
_S

E
T

 

-
-
-

..
..

..
 

1
/
 

T
ra

ck
 

" 

\, 
...... U
!~

a~
 ..... 1

 

-
-
-

.....
. 

--
.... 

1 
T

ra
ck

 
\ 

\,
 
~r
~p
_ 

.....
 1

 

T
R

K
_'

D
 

/
/
 F

e
R

 
, 

f 
R

es
ou

rc
e 

, 
\
, 

R
eq

u
es

t 
,/

 1 

Id
le

 
F

e
R

 L
is

t 

" 
\ 

f 
E

ng
ag

. 
) 

\ 
O

rd
er

 I
 

' ...
... 

_
/
 

.....
. -

--
U

N
IT

 
F

C
R

_L
 

/
-
-
-

" 

1 
N

ew
 T

ew
a 

\ 

\,
_:
:~
: 

....
. I

 

U
N

IT
 

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

- I 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
~
 

....
 "R

eq
i~
; 

". 
. "

:"
 

T
ra

ck
 In

f~
':

"'
. 

W
P

N
_R

E
Q

U
E

S
T

 

~
 

• 
( 

T
ra

ck
in

fo
 )

 
~
 I 

'C
he

cl
c-

\ 
\~
l~
~~
sJ
..
/ 

A
L

L
O

C
_P

L
A

N
 " 

f I 
E

ng
ag

. 
\ 

\ 
O

rd
er

 
J 

" 
,"

 
.... 

" 
--_

 ..... 
_P

L
A

N
 

A
L

L
O

C
_ 

-
-
-
-

.....
. 

(
/
 

W
e
a

p
o

n
' 

W
ea

p
on

 
\ .

!l
-e

so
ur

ce
R

eq
..)

 
In

fo
 L

is
t 

W
P

N
J
D

 1
-

-
W

E
A

P
O

N
 I

N
F

O
_L

 

/ 
W

ea
p

on
 .....

 ' 
~ U

ne
xp

ec
te

d 
1 

'.
f~

a~
g;

,/
/ 

I I 
1 _

_
_

_
_

_
 -
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
 ~
 

tv
 

tv
 

0
0

 --.l z ~ eo.
 -< o '" '" ~
 



17.2 ePN Model of Naval Vessel 229 

A simulation is initiated according to a predetermined air-threats scenario and 
a certain set of system parameters, e.g., specifying the desired weapon assign­
ment policy. Termination occurs when the air-threats are destroyed or the attack 
finished. Below we give a brief description of each of the four CPN pages in 
Figs. 17.3-17.6. 

Hardware's states Hardware's actions 

sensor 

I detecCset 
! Sensing Mode I \. _______________ . _____ J_. ___ ._ 

I 
I -----------,-----

Software'S states 

I 
I 
I 

Software's actions 

Hardware's interface 
I 
I [!!!] InROone 

I u :., Init ". 
- --1" - - - - .... " Done .,: 

I UNIT· .... • 

I 
I 
I 
I 
I [£ill 
I () /,--, 

Incident \ 

" Wave J 
UNIT -_/ 

Hardware 
Component 

Software 
Component 

[£ill 
trk_set New 

Tracks 

Software's interface 

Fig. 17.3. ePN page for Sensors 



230 17 Naval Vessel 

Page Sensors in Fig. 17.3 represents interacting hardware and software com­
ponents. The upper part of the diagram models the hardware. It accounts for the 
scan process. The entity state is either Idle, Emitting, or Receiving. The interac­
tions with the Threats and the TrackManager are depicted in the right-hand part. 
When a scan cycle is completed, detection is achieved through the software com­
ponent represented by the lower part of the CPN page. A token initially located 

Track Mgr's states Track Mgr's actions Track Mgr's interface 
and local database 

Irk_store 

~ /-- ...... 

L.-:.::=.:.::.:.:......;.::J-----"-:--_,I New Tewa \ 
Cycle / 

....... --"""UNIT 

Transmit 
Track Set 

W ...--, 
1+ __ -;-_-,1 Track \ 

Drop J 
..... ./ 

- TRK_ID 

w 
",.-- ...... 

( Track \ 
u Request / 

-- ...... UNIT 

Fig. 17.4. CPN page for TrackManager 



17.2 ePN Model of Naval Vessel 231 

in the Stand By place moves progressively downwards, enabling transitions to 
Start Computation, Create Contacts, Generate Tracks, and Update Tracks. Finally, 
a set of New Tracks are sent to the TrackManager via the output port in the 
lower right corner. The software component then returns to StandBy. 

Page TrackManager in Fig. 17.4 is initiated when the token in the left-hand 
part moves from Idle to one of the three other states. The various actions carried 
out by the TrackManager are shown in the central part of the diagram. A task 

Battle Mgr's states 

'BTLMGR_', 

bUmgr 

Battle Mgr's actions Battle Mgr's interface 

ggJ-
/' ..... 

fNeWTewa) 

.... C::c~ "'UNIT 

~ 
/-Wea;o~' 

Unexpected ) 

'- - ~han.lc:.-A~OC_PLAN 
~ 

/'FCR- ..... 
\ Unexpected ) 
'- Change / 

- - - -ALLOC_PLAN 

~ 

Kill ..... 
\ Assess ) 

.... - - "'KILL_ASSESS 

~ .".-- ....... 
~ ___ .... f Track ) 

\ Request 
....... --/UNIT 

~ 
(/'FcR ..... 
\ Resource) 

.tq~s,t....UNlT 

Fig. 17.5. ePN page for BattleManager 



232 17 Naval Vessel 

consists in handling sensor data or external track requests from other system en­
tities. The transition at the bottom of the CP-net Transmits a Track Set to the 
Battle Manager, which has made a Track Request - after being notified of the 
finishing of a New Tewa Cycle by transition Process New TrackSet. 

Page Battle Manager in Fig. 17.5 presents the states and actions required to 
carry out target evaluation and weapon assignment. The details of the actions are 
described at the subpages of the three substitution transitions. Four different 
kinds of input messages are received via the four input port places in the upper 
right part. They are Inserted in Message Queue by the uppermost transition. Then 
the mode changes from Idle to Situation Assessment by the occurrence of transi­
tion Start New Command Cycle. Finally, transition Situation Assessment occurs 
and the mode changes to Idle - either directly or via Resource Allocation (if re-

Weapon's states Weapon's actions 

~Wpnldle 

I 
Allocated I 
-----------------------~---

-- ----------------------,-f Engaged 
! I 

I 
I 
I 
I 

I 
I 

Weapon's interface 

GJ 
~ .... -

--- - "' / Break', 
I Engag_ \ I Engag . 

..... Ord~~.1 \ .Qrde,:/ 
ALLOC]UW 1 ALLOC]LAN 

.~--
Req. for - .. , 

". Track Info __ . 

. -~~N~REQU~ST 
GJ 

I ~ 
I --, 
I (Check ') 
I ~~~S~Sy 

i I ALLOC PLAN ' 
----.-----,~-··t ·1- ...... -...... --........ .' 

WEAPON 

~--------+--~ 

I 

I [(#Wpn_id wpn)= 
! I (#Wpn_id brk_en9_order)) I 
I ' ._-_._-_._._._._-----_._._j--_._._-_._._--- _____ .I 

I 
I 
I 
I 
I 
I 

GJ ,..---- ...... 
( Weapon ') 

ResourceReq ./ 
-----WPN_ID 

Fig. 17.6. ePN page for Weapons 



17.2 CPN Model of Naval Vessel 233 

planning and new resource allocation is necessary). When replanning is required, 
the MissionPlan is modified by the subpage of the substitution transition 
Resource Allocation. This may result in new engagement or disengagement or­
ders issued to the Action Manager via the three output port places in the lower 
right part of Fig. 17.5. 

Page Weapons in Fig. 17.6 is structured in a similar way as the previous CPN 
pages. In addition to Idle there are three other weapon modes. 

The full CPN model of the naval vessel contains approximately 300 places 
and transitions. The modelling was done by two persons using a total of ap­
proximately two man-months over a four-month period. The two modellers had 
backgrounds in engineering and computer science, with some skills in system 
modelling and design as well as a modest experience in computer programming. 

17.3 Simulation of Naval Vessel 

Monte Carlo simulations have been conducted for a number of various air-threat 
scenarios to determine the best of two different weapon assignment policies 
known as earliest intercept and random assignment. For each scenario, 30 simu­
lation runs were performed. Statistical estimates on ship survivability are shown 
in Fig. 17.7. For each threat level, a 95% confidence interval has been deter­
mined using a t-test. The results obtained from the CPN simulations proved to be 
compatible with the results obtained using a more refined simulation model gen­
erated by an object-oriented simulation environment recently developed at our 
research centre. 

For the lowest threat intensity the two defence strategies turned out to be 
comparable, both yielding a reasonably high probability of ship survival. How­
ever, as the threat intensity increases, the earliest interception policy shows a 
better performance. The CPN model can be used to determine the critical size 
for the threat intensity and hence select the most suitable defence strategy. 
Trade-offs between the quality of resource allocation and real-time measures of 
performance such as execution time, responsiveness, and graceful adaptation may 
also be easily investigated. 

Threat Intensity Weapon Assignment Policy 
(size of attack) Earliest Intercept Random Assignment 

4 0.967 t 0.068 0.933 t 0.093 

5 0.833 t 0.l39 0.800 t 0.149 
--r-

6 0.31OtO.171 0.133 t 0.127 

Fig. 17.7. Chances for naval vessel to survive, for three different threat intensities 
and two different defence policies 



234 17 Naval Vessel 

17.4 Conclusions for Naval Vessel Project 

Our Division has recently developed an object-oriented discrete-event simulation 
environment to investigate the performance of target evaluation and weapon as­
signment systems. The simulator is implemented in Sim++ and runs on Sun plat­
forms. The object-oriented simulator has been used to model the same conceptual 
high-level defence system modelled by the ePN tools. Hence, it is straightfor­
ward to compare the two models and the modelling processes. 

The ePN formalism offers the proper ingredients to represent the compo­
nents of the problem domain, and the ePN tools facilitate system design and 
system validation. eP-nets capture information/data flows and system concur­
rency through synchronous and asynchronous processing activities and allow en­
capsulation and representation of behaviour at different abstraction levels - a 
critical feature for command and control systems. The ePN tools constitute an 
excellent framework for architecture analysis, minimizing the effort required to 
modify the model structure and network connectivity. It is also fairly simple to 
reconfigure activities and change communication links between key elements. 
Most of these characteristics make the ePN approach definitely more attractive. 

The ePN approach allows the designer to focus on the model problems at 
hand - instead of implementation details. However, a preliminary experiment for 
simple system design with the ePN tools tends to suggest that even though a 
large variety of possible modelling mechanisms are available, the success of the 
ePN approach largely depends on the actual choice of aspects of the system to be 
modelled. Except for small systems, a single net accounting for all aspects is be­
lieved to be very unlikely. Consequently, if a complete and very detailed model 
is to be created, the ePN approach may be limited to simpler system components 
such as a specific military subsystem. 

The main advantages shown by the ePN approach over the object-oriented 
simulation environment can be summarized as follows: rapid prototyping, for­
mal specification, system modularity, explicit representation of concurrence, 
easily manageable for small models, verification capabilities, shorter develop­
ment cycle, and faster maintenance. On the other hand, the weaknesses are basi­
cally related to symbolic treatment limitations, granularity of the modelling, lack 
of libraries supporting the implementation of sophisticated numerical algorithms, 
and restricted capabilities offered by the tool at hand for system design. In these 
areas the object-oriented approach prevails. 

The ePN approach facilitates identification and analysis of the critical timing 
factors and impacts on overall system performance. For instance, it allows the 
designer to identify bottlenecks as the problem size grows, to determine reaction 
time (stimulus-response delay) for various critical processes, to predict overall 
system responsiveness and to test alternative concepts from threat detection to 
weapon release. These tasks can be accomplished much more easily due to the 
graphical representation of the model. The ePN approach also presents a capa­
bility to achieve formal analysis in order to verify system properties, e.g., via 
occurrence graph analysis or invariant analysis. 



17.4 Conclusions for Naval Vessel Project 235 

CPN technology appears to be a suitable approach for formal specification of 
concurrent system designs satisfying functional and time requirements. The un­
derlying formalism supports rapid prototyping to test concepts and alternatives 
and allows the designer to focus hierarchically on problem domain modelling 
rather than implementation issues. Moreover, the CPN tools present a capability 
to perform "what-if' simulation and carry out formal analysis to verify system 
properties. 



Chapter 18 

Chemical Production System 

This chapter describes a project accomplished by Hartmann Genrich, Gesell­
schaft flir Mathematik und Datenverarbeitung, Bonn, Germany, Hans-Michael 
Hanisch, University of Magdeburg, Germany, and Konrad Wollhaf, University 
of Dortmund, Germany. The chapter is based upon the material presented in 
[27]. The project was conducted in 1993. The original ideas were formulated in 
terms of PredicatelTransition Nets, but all the modelling, simulation and occur­
rence graph analyses were done by means of CP-nets and the CPN tools. 

We present a method for the description and validation of control procedures 
for multipurpose chemical batch plants (which in many respects are similar to 
flexible manufacturing systems). Our method is based on the use of recipes, 
which is a standardised concept used by the big chemical companies. The recipes 
and plant description are transformed into CP-nets, which are investigated by 
simulation and by occurrence graph analysis to find desired or critical behav­
iour, e.g., resource conflicts and deadlocks. 

The translation of the recipes and plant description into CP-nets is very natu­
ral and straightforward. It allows us to transfer the basic concepts of CP-nets, as 
well as their analysis methods and tools, to a new interesting field of application. 
We can get a deeper understanding of the production processes described by 
recipes and we can prevent malfunctions before they occur in the real production 
system. 

Section 18.1 contains an introduction to chemical production, in particular the 
use of recipes. Section 18.2 presents the CPN model of the recipes and the 
chemical plant. Section 18.3 describes the validation of the CPN model. Finally, 
Sect. 18.4 presents a number of findings and conclusions for the project. 



238 18 Chemical Production System 

18.1 Introduction to Chemical Production System 

Our description of the production process is based on the concept of recipe­
controlled operation. This methodology is developed by the big chemical compa­
nies, and it is used by all major suppliers of process control systems for chemical 
batch plants. 

A basic recipe describes the production process in a general, plant­
independent way. It has four items. The recipe header provides general infor­
mation, such as the product name, the quantity produced, and the date for the 
creation of the recipe. The list of products describes the raw materials which 

start 

feed solvent 
in reactor 

level for solvent reached 

feed raw material A 
in reactor 

level for material A reached 

feed raw material B 
in reactor 

level for material Breached 

evacuate 
reactor 

pressure < 10 mbar 

discharge reactor 
to crystalliser 

reactor level <= 0 

cool 
crystalliser 

T crystalliser < 260 K 

discharge crystalliser 
to filter 

crystalliser level <= 0 

filtration, discharge 
solvent to storage tank 

liquid level <= 0 

discharge product 0 
from filter 

quantity filter cake <= 0 

end 

heat 
reactor 

T reactor> 370 K 

crystallise 
material 0 

reaction in reactor 
A + B --> 0 

concentration 0 > 8% 

Fig. 18.1. Example of a production procedure specified in a basic recipe 



18.1 Introduction to Chemical Production System 239 

are needed for the production, e.g., by specifying their chemical formula. 
Analogously, the list of devices describes the production equipment which is 
needed, e.g., reactors and filters. Finally, the production procedure describes 
the basic functions of the production and the sequence in which they are per­
formed. It specifies the causal order of states and state transitions. The shifts 
from one operation to the next are controlled by clocks and thresholds for pres­
sure, temperature, or concentration. Figure 18.1 shows the production proce­
dure for a basic recipe. 

First the solvent is pumped into a reactor where the raw materials A and B 
are added in the correct proportion (controlled by two level thresholds). Next 
the reactor is evacuated (to a pressure threshold) and heated (to a temperature 
threshold), starting the chemical reaction. When a specified concentration 
threshold is reached, the contents of the reactor are discharged into a crystalliser 
which is cooled down (to a temperature threshold). Then the crystallisation 
process is assumed to be finished and the whole mixture is discharged into a fil­
ter, where the product is separated from the solvent, which is moved to a storage 
tank to be reused in a subsequent production cycle. 

From the basic recipe a control recipe is developed. It is similar to the ba­
sic recipe except that a number of parameters now are replaced by real values, 
determined from the production plan and the specific properties of the chemical 
plant. As examples, we now know the desired production quantity and the exact 
production equipment to be used. The basic recipe specifies that a reactor with 
certain properties must be used. The control recipe tells us exactly which reactor 
it is. 

The chemical plant is characterised by the individual pieces of production 
equipment, their connections, and the technical functions, i.e., the actions 
which can be performed on them. Figure 18.2 shows a small part of a chemical 
plant containing a crystalliser, two filters, a cooling device, and five valves. On 
this part it is possible to perform the technical function Discharge from Cl to 

V14 V15 

Crystailiser 

- Cl 

F2 

Fig. 18.2. Small part of a chemical plant 



240 18 Chemical Production System 

F2. The crystalliser C1 is the source of the material, while the filter F2 is the 
target. The valves V17 and V20 are resources that must be used exclusively by 
this technical function. Moreover, it must be guaranteed that no other technical 
function will open the valve V19 while this function is active, so this valve must 
be blocked. Another technical function for this production unit may be Cooling 
of Cl by Cooling Device. The multipurpose plant is the "hardware" to execute 
the production processes defined in the basic recipes. It offers technical functions 
providing the realisation of the basic functions in the basic recipes. 

For specifying the recipes, as well as the chemical plant, special graphical and 
textual editors are available. We derived the CPN model from specifications 
made in these editors. The translation was manual. However, it is possible to 
formalise the translation and automate it. To use our approach in practice this 
must be done. 

The concepts of basic recipes and control recipes are now widely used for the 
design of chemical processes. However, in their standard form, there are a num­
ber of problems: 

• Recipes are designed by intuition and they are not systematically analysed, 
e.g., to check whether the individual items of a control recipe are consistent 
with those in the corresponding basic recipe. 

• Each control recipe describes the sequence of technical functions needed to 
manufacture a single product, and there is no attempt to describe or analyse 
the interactions between different recipes concurrently performed in a plant 
and sharing resources such as reactors, cooling devices, filters, and valves. 

• Recipes usually describe the desired sequences of steps, while the control op­
erations necessary to handle disturbances are specified separately, although 
they can fundamentally change the interactions between recipes, leading to 
critical and dangerous situations. 

Below, we focus on the second of these problems, i.e., the normal-mode interac­
tions between recipes. However, we are also able to model disturbances and the 
modification of resource allocation caused by these. 

18.2 CPN Model of Chemical Production System 

The basic idea behind our work is to create a single CPN model which encoun­
ters the chemical plant as well as the control procedures. The model describes: 

• The allowed sequences of basic functions in the basic recipes, 
• The process devices in the chemical plant and the technical functions of these, 
• The allocation of process devices to the control recipes. 

Figure 18.3 shows the CPN page for the production procedure in Fig. 18.1. The 
places p 1-p 17 represent the execution of the different basic functions, while the 
remaining places represent the raw material and production equipment needed. 
The transitions represent the events that start and supervise the basic functions. 



[Check [r] OS] 

[Check [r] DA] 

[Check [r] DB] 

[Check [r] EV, 
Check [r] HS] 

18.2 CPN Model of Chemical Production System 241 

Reactors 

Cooling 
Device 

c 

c 

Crystal­
lisers 

Vacuum 
Pump 

Fig. 18.3. CPN page for the production procedure in Fig. 18.1 



242 18 Chemical Production System 

The variables r, c, and f are used to denote reactors, crystallisers, and filters, re­
spectively. We have hidden all colour sets, since they can be deduced easily from 
the arc inscriptions. Arcs with hidden arc inscriptions have e as arc expression. 

Each process device is represented by a token. For a reactor the token could 
look as follows, where TechFns specifies the technical functions in which the re­
actor is able to participate: 

{Name = RI, 
Volume = 6.3, 
MaxTemp = 473.0, 
MaxPres = 10.0, 
Material = MatO, 

(* m3 *) 
(* Kelvin *) 
(* bar *) 

TechFns = [DS, DA, DB, DC, EV, HS, TRCl, TRF2]}. 

DS 
DA 
DB 
DC 
EV 
If) 

TRCl 
TRF2 

Dosing from solvent to reactor 
Dosing from raw material A to reactor 
Dosing from raw material B to reactor 
Dosing from raw material C to reactor 
Evacuation from reactor by vacuum pump 
Heating by steam device 
Transfer from reactor to crystalliser C 1 
Transfer from reactor to filter F2. 

However, for our work, it turned out to be more convenient to take a simpler 
approach, in which each reactor is represented by a token with colour i, where i 
is a natural number describing the identity of the reactor. The position of the to­
ken indicates the current use of the reactor. When the i-token is positioned on 
place Reactors, the reactor Ri is free. When the i-token is positioned on one of 
the places pI-pI7, the reactor Ri is in use for the corresponding basic function. 

The other kinds of process devices are represented in a similar way. This 
means that tokens for the places representing basic functions have a colour of the 
form (i,j, ... ,k), where i,j, ... ,k are natural numbers identifying the process de­
vices which are in use for the execution of the corresponding basic function. As 
an example, pll has tokens where the token colour is a pair in which the first 
element identifies a reactor while the second identifies a crystalliser. 

From the initial marking of Fig. 18.3, it can be seen that the plant has three 
Reactors, two Filters, and one Crystalliser. The guards of the transitions check 
that the chosen process devices are able to perform the required technical func­
tions. This is done by an ML function Check, in which the information about 
technical functions is hard-coded. For example, the topmost transition has a 
guard which checks that the reactor r is able to perform the technical function 
DS needed for the execution of the basic function represented by p2. 

Each storage tank is represented by a place, which contains a token when the 
tank is available and no token when the tank is in use. For example, Fig. 18.3 
contains three places representing tanks for the Solvent, raw MaterialA, and raw 
Material B. For this kind of equipment no identification information is needed 
and hence the tokens are e-tokens. Alternatively, we could have used a single 



18.2 CPN Model of Chemical Production System 243 

place to represent all storage tanks, using the token colour to denote the identity 
of the tank. 

Some kinds of resources may be used by several processes at a time, but still 
have some limits. Examples are the Vacuum Pump and the Cooling Device. The 
initial marking of these places reflects that they both have the capacity to serve 
two production processes at a time. Again, we could have used a single place, 
with an initial marking of 2'VacuumPump + 2'CoolingDevice. 

Usually, the resource allocation is not explicitly specified - neither in the ba­
sic recipes nor in the plant description. The decisions are left to the plant opera­
tor or to the programmer of the process control system. Inadequate resource al­
location may cause hazardous states or blockage in the production system. Hence, 
we want to apply the analysis techniques of CP-nets to detect such errors before 
the production process is performed. 

18.3 Validation of Chemical Production System 

The CPN pages for the individual recipes can be simulated either separately or as 
a joint CPN model. In the latter case, they interact via the common resource 
places for reactors, storage tanks, cooling devices, etc. All these places are global 
fusion places. To improve readability we have drawn these places with thicker 
lines and hidden the fusion tags, since they provide no additional information. 
The initial marking of the topmost place (in each recipe model) reflects the pro­
duction target, i.e., the number of batches that should be manufactured. The con­
flicts in the CPN model represent resource allocation decisions to be made. Suit­
able decisions will ensure that no deadlocks occur. 

Each CPN page represents all possible control recipes for a basic recipe in the 
chemical plant considered. A specific control recipe is obtained by binding each 
of the variables (r, c, f in Fig. 18.3) to a specific piece of the production equip­
ment. In this way, we may, e.g., get a control recipe that use reactor Rl, filter 
F2, and crystalliser C 1. 

The CPN models can be debugged by interactive simulation. We can study the 
execution of specific control recipes and investigate whether the sequences of 
technical functions prescribed by the recipes meet the requirements of the manu­
facturing processes. We can also study the flow of resources, as well as the flow 
of batches through the production system. 

For a systematic detection of possible malfunctions, such as deadlocks, we use 
occurrence graph analysis. If a deadlock is found, it is possible to investigate 
why it appears. To portray the occurrence sequences leading to the deadlock, we 
have extended the occurrence graph tool with an ML library that allows the user 
to obtain graphs like the one shown in Fig. 18.4. The graph is automatically de­
rived from the occurrence graph, but the layout is improved, manually, by using 
the alignment commands of the CPN tools. The graph displays the history of a 
deadlock caused by choosing reactor R3 for the manufacturing of product I and 
reactor Rl for manufacturing of product II. Product I is modelled by the CPN 
page in Fig. 18.3, while product II is a similar, but slightly different product. 



244 18 Chemical Production System 

The deadlock results from the fact that reactor RI cannot be cooled (because no 
cooling is provided) and reactor R3 cannot be evacuated. The graph displays the 
occurring transitions - input places display the marking before the occurrence of 
the corresponding transition, while output places display the marking after the 
occurrence (output places with empty markings are omitted). The graphs con­
stitute a convenient and fast way to investigate abnormal behaviour. They are 
much easier to overview than the full occurrence graph, which in this case has 
more than 800 nodes and nearly 2000 arcs. 

To prevent problems like the one described above, each process device must 
be checked, at the very beginning, for all the technical functions needed during 
the processing of the entire recipe. But even if this is done, there may easily exist 
inadequate resource allocation strategies causing delays or blockage of one recipe 
by another. As an example, we may choose filter F2 for the manufacturing of 
product I. This is possible, because F2 has all the required technical functions. 
However, this only leaves filter FI for product II, and this filter cannot be used 
(since the only way material can be transferred from a reactor to FI is via the 
crystalliser Cl which is occupied by product I). 

The kinds of malfunction described above may seem trivial and easy to detect, 
but this is not at all the case. Multipurpose chemical plants are often very com­
plex, producing more than 100 different products with up to 10 control recipes 
running concurrently. In such cases, a subtle interplay of several recipes may 
lead to occasional malfunctions that are hard to detect and correct - unless one 
uses a systematic approach such as our occurrence graph analysis. 

Product I Product II 
Reactors Solvent Mat A Mat B Mat C 

e p1 e e 

Fig. 18.4. The history of a possible deadlock in the chemical production system 



18.4 Conclusions for Chemical Production Project 245 

18.4 Conclusions for Chemical Production Project 

We have developed an approach for analysing recipe-controlled chemical pro­
duction processes by means of eP-nets. The approach can be extended to handle 
larger and more complicated problems, as shown in [9]. 

It is easy to extend the guard expressions to check for the temperature, pres­
sure, and material constraints (mentioned in the description of the reactors). It is 
also straightforward to model the use and blockage of valves, in a similar way as 
we model the use of other kinds of production equipment. Another possible ex­
tension is to include time issues, obtaining a timed ePN model which can be used 
to solve scheduling and performance problems. 

Finally, it is possible and necessary to develop bridges between the different 
tools. This will allow the ePN model to be derived automatically (or at least 
semi-automatically) - removing the rather trivial, but time-consuming and 
error-prone task of creating the ePN model. 

It is our hope that the basic ideas described in this chapter may lead to a com­
puter-aided verification tool for recipes ensuring more effective and safer con­
trol procedures in the chemical industry. Work in this direction is in progress. 



Chapter 19 

Nuclear Waste 
Management Programme 

This chapter describes a project accomplished by Kjeld H. Mortensen and 
Valerio O. Pinci, Meta Software Corporation, Cambridge MA, USA. The chap­
ter is based upon the material presented in [41]. The project was conducted in 
1991. 

We describe how CP-nets and the CPN tools were used to model and improve 
a nuclear waste management programme in charge of the creation of a new sys­
tem for permanent disposal of nuclear waste. We used Structured Analysis and 
Design Technique (SADT) together with CP-nets. This was done in a similar 
way as described in Chap. 14. We used the SADT tool to obtain a work flow de­
scription of the activities to be performed by the waste management programme. 
The SADT description was then translated into a number of CP-nets which were 
augmented with additional behavioural information. Each of the CP-nets was 
simulated to produce event charts displaying the activities of the corresponding 
part of the waste management programme. The event charts were used to inves­
tigate whether there were any blockages in the information flow of the individ­
ual parts. Finally, all CPN models were merged into a single simulation model 
that was used to validate the interaction and co-operation between the different 
parts of the waste management programme. 

Section 19.1 contains an introduction to the nuclear waste management pro­
gramme and describes the organisation of the project. Section 19.2 describes 
how the SADT model was translated into a number of CPN models. It also de­
scribes how decision tables were used to convey the intended behaviour of the 
individual activities. Section 19.3 reports upon the simulation of the CPN mod­
els. We also briefly discuss how the CPN models were merged into a single 
simulation model. Finally, Sect. 19.4 presents a number of findings and conclu­
sions for the project. 



248 19 Nuclear Waste Management Programme 

19.1 Introduction to Nuclear Waste Management Programme 

A large nuclear waste programme in USA is responsible for permanently dis­
posing of used nuclear fuel and similar high-level nuclear waste. By programme 
we here mean an organised set of activities directed towards a common purpose. 

The objective of the nuclear waste programme is to establish a capability to 
accept, transport, and store nuclear waste by 1998, and to start the storage of nu­
clear waste in a geological repository by 2010. The programme has quite unique 
characteristics. It provides safe nuclear waste isolation for 10 000 years with 
unprecedented oversight and control by different affected and interested groups. 
Additionally, the programme must take into account changing conditions in its 
environment, e.g., changes in the current legislation. The programme director 
therefore decided to develop the management strategy and to carefully design the 
programme, much like physical systems are designed. A general design method­
ology is used to capture the functionality of the organisation. 

The physical waste management system is composed of groups of people, 
documents, and equipment. They need to co-operate and interact with each other. 
A group of people in charge of a specific domain needs to exchange many kinds 
of information with other groups. In order to ensure an efficient and consistent 
co-operation and interaction between groups, the Nuclear Waste Management 
System (NWMS) is modelled with SADT, and the resulting model is analysed by 
translating it into CP-nets which subsequently are simulated. For more informa­
tion about SADT, see Sect. 14.1 and [38]. 

Certain major components of the system are called the programmatic func­
tions. These are the activities that bring the physical nuclear waste management 
system into being. The process of modellil!g and analysing the programmatic 
functions will be referred to as the programmatic functional analysis (PFA). The 
modellers take the perspective of functional behaviour on the nuclear waste man­
agement system. Models will provide a means for people in the programme to 
better understand their position in the overall programme. They will be able to 
identify their own activities, e.g., how co-operation and interaction should take 
place with other people in the management system. The result of the analysis is 
to be used for developing policies and guidelines to improve the management 
system. 

The modelling work was done during a six-month period. Two groups of 
people with very different backgrounds and qualifications participated in the 
project. The main group performing programmatic functional analysis (which 
we will refer to as the PF A team) was responsible for designing the new system 
management strategy. The PFA team produced, among other things, functional 
descriptions in the form of SADT diagrams. The size of the team varied between 
15 and 25 persons. The waste management programme interacts with and is re­
stricted by a variety of groups in the world outside. As an example, the pro­
gramme has to work within changing laws of the government, and it has to han­
dle and interpret many sorts of data coming from, e.g., geologists who analyse 
potential storage sites. Hence, the PF A team contained people with very different 



19.1 Introduction to Nuclear Waste Management Programme 249 

knowledge and experience, e.g., lawyers and geologists. There was no attempt to 
train the PF A team in using CPN. 

In this chapter the word "we" refer to the members of the CPN team. The 
CPN team consisted of two persons having several years of experience with 
SADT and CPN. It was the responsibility of the CPN team to convert the SADT 
diagrams into executable CPN models, based on additional written descriptions 
of the intended behaviour of the individual activities. In this way, we created a 
number of CPN models which were used to simulate and analyse different as­
pects of the waste management system. An example of an interesting question is 
whether there is any unintended blockage of the information flow in the system. 
Such a blockage may be discovered as a deadlock in the model. In the real world 
there will not be a deadlock, but some activities will be suboptimal and hence 
imply delays. The purpose of our involvement was to provide an executable 
model of the PFA team's SADT model, to provide a basis for validation and im­
provement of the accuracy and completeness of the programmatic functional 
analysis. 

From the PFA team's point of view, the interaction and co-operation between 
the various submodels can be compared with a protocol. As the SADT submodels 
are made independently by different people, it is not guaranteed that the sub­
models will be consistent, i.e., fit nicely together when the model is viewed as a 
whole. The SADT modellers used the CPN models and the CPN simulations to 
validate that the SADT submodels had consistent interfaces and were able to in­
teract and co-operate as expected. Via the event charts produced by the simula­
tions the SADT modellers also obtained a much more concrete and detailed un­
derstanding of the system behaviour than could be accomplished by just looking 
at the static SADT diagrams. 

DIRECTIONS LEGAL REQUIREMENTS PROGRAM CONSTRAINTS 

REGULATORY ACCEPTANCE! 
AUTHORIZATION 

L~~_ANDGUIDANCE ,..----_~~~~~ 

EXTERNAL INFO 

WASTE ~~~======::;! --~-~~ ISOLATED WASTE 

TECHNOLOGY ) ~r-r--
TEC~ ~II 
PROGRAM INPUT I 

EXTERNAL INFO NEEDS I 
j 

EXTERNAL REVIEWS ~~~~ 

AO 

-+APPLICATIONS 

I II REGULATORY REPORTS 

FUNDS ORGANISATION 

Fig. 19.1. Most abstract SADT page for nuclear waste management programme 



250 19 Nuclear Waste Management Programme 

Figure 19.1 shows the most abstract SADT page. It provides an overview of 
the interaction between the waste management system and the external environ­
ment. The activity has a number of inputs, e.g., Waste and Technology. It has a 
number of outputs, e.g., Isolated Waste. It operates under the control of, e.g., 
Legal Requirements and Programme Constraints. Finally, it uses mechanisms, 
e.g., an Organisation (people and machinery). At the lower-level pages all 
mechanism arrows are omitted. This implies that the model does not deal with 
the use of resources. 

To finish the CPN model within the available resources, the CPN model only 
deals with the most important parts of the management programme, known as 
the "seven major programmatic functions": 

• Provide Programme Control (PPC) controls and provides overall management 
direction for the NWMS programme. 

• Ensure Regulatory Compliance (ERC) identifies regulations that apply to the 
programme and the physical system. 

• Perform Systems Engineering (PSE) transforms NWMS mission requirements 
into functions, requirements, and interfaces for physical system. 

• Design Engineered System (DES) is divided into four phases: conceptual, pre­
liminary, final, and as-built design. 

• Identify and Characterise Sites (ICS) finds and screens potential sites for nu­
clear waste storage. 

• Evaluate Integrated System (EIS) is intended to reduce programme technical 
performance risks. 

• Perform Confirmation/Construction/Operational Testing (PCOT) plans, con­
ducts, and documents tests to verify that the physical system conforms to, e.g., 
technical requirements. 

The latter five functions are the activities of the SADT diagram shown in Fig. 
19.2. The remaining two functions are located in other parts of the model. The 
five activities in Fig. 19.2 have a close interaction. Typically, PSE provides input 
information to one of the other four activities, which in turn provides a result 
which is either a success (Le., a final result) or a request for more information 
or additional action. The result is processed by PSE, sometimes in co-operation 
with ppc. And so it goes on through all stages of the NWMS programme. 

Typically, the PFA team finished a first version of one of the submodels. Our 
task was then to translate the SADT diagram into a CPN model and to finish the 
model by adding behavioural information so that a simulation could take place. 
An example of a typical SADT page is shown in Fig. 19.3. The first activity is to 
Identify Variances (Le., possible delays). Then we Determine Causes of Variances 
and Determine Variance Impacts. Finally, we Identify Corrective Actions to be 
taken. The results are used to make change requests. Approved changes are sent 
to ERC, which is responsible for realising the requests. 



"'
l 

etC
- .... 'C
 

~
 

en
 E; -
l 

"C
l ~ '" ::r
 

o ~
 s· (J

q
 ~
 

(;l
 ~ ::
l J (>
 

::
l ::n
 

<
 

(>
 

"C
l a I (") 2'
 

::
l 

("
) g. ::
l en
 

A
pp

ro
ve

d 
B

as
e 

Li
n 

~
 

E
va

lu
at

ed
 B

as
e 

~
 

P
ro

 
Li

n 15
 

Im
p 

in
fo

 

A
llo

ca
te

dt
, 

, c
ha

ng
es

 
~
 l

 
P

E
R

F
O

R
M

 
S

ys
te

m
 c

on
fig

ur
at

io
n 

in
fo

rm
at

io
n 

re
gt

y 
rq

m
ts

 

\....
..:::

 
S

Y
S

T
E

M
S

 
/ 

f 
0

: 
le

m
en

ta
tio

n 
E

N
G

IN
E

E
R

IN
G

 
/ 

S
ys

 c
on

fig
 in

! 

rm
at

io
n 
J 

r
-
-

0
3

 

12
 

P
o 

ap
 

re
g 

r
-

2
.
1

.
1

.
1

"
 

tfcN
WM

" "s
g

r 
.. 

:_
 

..
..

..
. -

_.
 

,. 
N

W
M

S
 im

pl
tl 

en
tia

lly
 

N
W

M
S

 in
fo

 
N

W
M

S
 r

qm
t 

qm
ts

 
rq

m
ts

 
,li

ca
bl

e 
te

ch
 

~
 

C
on

tr
ol

le
d 

D
E

S
IG

N
 

...
...

..-
--

-
ul

at
or

y 
rq

m
ts

 
N

W
M

S
 

...
...

. 
E

N
G

IN
E

E
R

E
D

 
".

:. 
~
.
 . 

N
W

M
S

 te
st

in
g 

rq
m

ts
 

de
sc

pn
 

S
Y

S
T

E
M

S
 

C
on

tr
ol

le
d 

N
W

M
S

 s
Iti

ng
 

en
gr

d 
sy

s 
rq

m
ts

 
11

 
T

e 16
 

N
e 

N
W

 

13
 

P
ri

o 

hn
ol

og
y 

~N
ee

d 
fo

r 
re

vi
ew

 
2.

1.
1.

2 
n 

d
e

sc
p

n
 

~
 

o
f 

N
W

M
S

 r
qm

ts
 

I
j
.
.
 

. .. 
~
_
 

ID
E

N
T

IF
Y

 A
N

D
 

N
W

M
S

 e
va

l 
rq

m
ts

 
d 

fo
r 

re
vi

ew
 o

f 
.
.
.
.
.
.
.
"
.
.
.
.
.
 

C
H

A
R

A
C

T
E

R
IZ

E
 

M
S

 i
m

pl
tn

 r
qm

t 
E

ng
rd

 s
ys

 in
fo

 
N

ee
d 

fo
r 

re
vi

ew
 o

f
.
.
 

S
IT

E
S

 
N

W
M

S
 d

sg
n 

rq
m

ts
 

.' 
.
,
 

. 
.;_

 
N

ee
d 

fo
r 

re
vi

ew
 o

f 
2.

1.
1.

3 
Itl

za
tlo

n 
cn

te
n

. 
N

W
M

S
 s

iti
ng

 r
qm

ts
 

..
 

E
V

A
L

U
A

T
E

 
0

4
 

" 
C

on
tr

ol
le

d 
IN

T
E

G
R

A
T

E
D

 
N

ee
d 

fo
r 

re
vi

ev
 

S
ite

 c
ha

ra
ct

er
is

tic
s 

N
W

M
S

 d
es

cp
n 

~
 

S
Y

S
T

E
M

 
r---

-
Io

f p
gm

 d
ir

 

an
d 

at
tr

ib
ut

es
 

D
at

a 
on

 e
va

l s
ys

 
N

W
M

S
 e

va
l 

rq
m

ts
 

2.
1.

1.
4 

F
ai

lit
ie

s 
an

d 
/ 

__
_ 

./
 

su
pp

or
t n

ee
d,

 o 

S
ui

t m
ea

su
re

s 
N

ee
d 

fo
r 

re
vi

ew
 o

f 
D

 
P

E
R

F
O

R
M

 
I 
(~

 
lit

ie
s 

an
d 

~
 

~
 

C
O

N
F

IR
M

A
T

IO
N

! 
f-J

 
F

a 
su

p 14
 

A
cq

 
co

n 
sy

s 

)o
rt

 p
ro

vi
de

d 
~
 

C
O

N
S

T
R

U
C

T
IO

N
I 

f-
--

~
 

O
P

E
R

A
T

IO
N

A
L

 
--

. -
d/

--
--
--
--
--
~-
--
--
--
--
--
--
--
-N
-e
-e
-d
~f
~o

-r
-r
n-
v~
ie
-w
--
of
~-
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-~
~ 

T
E

S
T

IN
G

 
n 

U
lre

 
2 

1 
1 

5 
st

ru
ct

ed
 

N
W

M
S

 te
st

in
g 

rq
m

ts
 

. 
. 

. 

co
m

p
o

n
e

n
ts

 

T
es

t 
re

su
lts

 

:-0
 

>-
< 

::
l ~ ("
) g' o z "" ("
) (;
" e; ~
 

g; (;
' ~
 

O
J ::
l t '"t
l a 1 (> tv
 

U
1

 



""
l 

~
.
 .... '.

Q
 

~
 

~ o·
 

eo.
 

ti
l ~ '0
 

~
 '" ~ , e; ~
 
~
 

CD
" 1 ] I 

ID
E

N
T

IF
Y

 
V

A
R

IA
N

C
E

S
 

S
el

 v
rn

cs
 

11 P (P
 

S
U

B
JE

C
T

 T
O

 
r---

--. 
irf

 v
rn

cs
 

A
N

A
L

Y
S

IS
 

V
 

(S
el

ec
te

d 
va

ria
nc

es
) 

lr
fo

rm
a

n
ce

 v
a

ri
a

n
c
e

s
).

..
. 

2.
2.

2.
4.

5.
3.

1 

12
 

N
e 

(N
e,

 

~
 

D
E

T
E

R
M

IN
E

 
C

A
U

S
E

S
 O

F
 

V
A

R
IA

N
C

E
S

 

..
..

 
2.

2.
2.

4.
5.

3.
2 

V
rn

c 
ro

ot
 c

au
se

s 
/ 

(V
ar

ia
nc

e 
ro

ot
 c

au
se

s)
 

D
E

T
E

R
M

IN
E

 
V

A
R

IA
N

C
E

 
IM

P
A

C
T

S
 
~
 

..
..

 
2.

2.
2.

4.
5.

3.
3 

S
· 

T
 

/ 
19

n1
 I

ca
nt

 
----

--. 
im

p
a

ct
s 

.. 
ID

E
N

T
IF

Y
 

C
O

R
R

E
C

T
IV

E
 

A
C

T
IO

N
S

 

P
er

f 
an

l~
 s 

re
su

lts
 

(P
er

fo
rm

al
 

an
al

ys
is

 rE
 .. --
,. 

ce
 

su
its

) 

0
1

 

... 
2

.2
.2

.4
.5

.3
.4

l 

N
ee

d 
fo

r 
ad

dl
 a

nl
ys

 
(N

e
e

d
 f

o
r 

ad
di

tio
na

l a
na

ly
si

s)
 

tv
 

V
I 

tv
 --0 ~ [ :::::
 ~ s:: ~ ~ :a f 



19.2 CPN Model of Nuclear Waste Management Programme 253 

19.2 CPN Model of Nuclear Waste Management Programme 

Together with the SADT models the CPN team got a clarifying description of 
the intended behaviour of the individual activities. Initially these descriptions 
were made in unstructured prose, as illustrated by the following example. The 
mission part explains what the activity is supposed to do in terms of input and 
output. The scope part explains to what extent the rest of the waste management 
programme is involved in the actions of the activity. 

Identify Corrective Actions 

Mission: Develop alternative actions to correct root causes and miti­
gate impacts of the variances affecting the programme. 

Scope: Analyse the variance root causes and impacts and develop al­
ternative corrective actions to correct the cause or mitigate the im­
pact. Analysis includes identifying and evaluating the risks associated 
with each corrective action. 

Communicating the intended behaviour in the above form turned out to be insuf­
ficient and ambiguous. Hence a more structured kind of descriptions was intro­
duced as shown below. The behaviour is now described by means of a decision 
table. There is a row for each arrow and there is a column for each possible ac­
tion pattern. Patterns to be used the first time the activity is executed is marked 
with a "1", while patterns to be used at subsequent executions are marked with an 
"S". The crosses indicate the inputs to be received and the outputs to be pro­
duced. From the decision table, we learn that Identify Corrective Actions needs 
input along both of its incoming arrows, while it produces output along exactly 
one of the outgoing arrows. As can be seen, the decision table was accompanied 
by a number of notes, which basically tell the same story in prose. 

----.----~~-~ -~ 

Identify Corrective Actions Operative Cycles 

Arrow Label Type 1 I S S 

Significant impacts In x x x x 

Variance root causes In x x x x 

Performance analysis results Out x x 

Need for additional analysis Out x x 
__ ~ ____ C---. '----- _ 

I) Initial execution requires both the Significant Impacts and Vari-
ance Root Causes and will produce either the Performance 
Analysis Results (which includes alternative corrective actions if 
applicable) or the Need for Additional Analysis. 

2) Subsequent executions of the activity behave in the same manner 
as the initial execution. 



254 19 Nuclear Waste Management Programme 

The use of decision tables gave a significant speedup in our process of under­
standing the SADT model. We were now also, at an early stage, able to predict 
unintended behaviour. As an example, the above decision table may cause a 
blockage in the information flow. When the result of the activity is Need for 
AdditionalAnalysis, the third activity in Fig. 19.3 is executed once more. How­
ever, this only creates one of the inputs needed by Identify Corrective Actions, 
while the decision table tells us that we always need both inputs. This problem 
was reported to the PF A team, which modified the decision table so that subse­
quent executions of the activity only require one of the inputs. The modified de­
cision table looks as shown below. By identifying and fixing this type of error at 
an early stage, we saved a lot of time. 

Identify Corrective Actions Operative Cycles 

Arrow Label Type 1 1 S S S S 

Significant impacts In x x x x 

Variance root causes In x x x x 

Performance analysis results Out x x x 

Need for additional analysis Out x x x 

We transformed the SADT model into a number of CPN models - one for each 
of the seven major programmatic functions considered. This was done as de­
scribed in Chap. 14. The net structure, the hierarchy structure and the colour set 
names were obtained, automatically, from the SADT diagram. Then the net in­
scriptions and the detailed colour set declarations were added manually. 

During the automatic translation from SADT diagrams into CP-nets, the 
graphical layout is preserved. The CPN transitions and arcs get the same name, 
shape, size, position, and graphical attributes as the corresponding SADT activi­
ties and arcs. Figure 19.4 shows the CPN page obtained from the SADT page in 
Fig. 19.3. A blow-up of the rightmost transition is shown in Fig. 19.5. Here, we 
also show some of the net inscriptions that are hidden in Fig. 19.4. 

The dashed places and arcs and all net inscriptions (except colour sets) are 
added manually (as explained below). There are a lot of details in Fig. 19.4, but 
we will only explain the most important ones. 

As can be seen from Figs. 19.3 and 19.4, the colour set names (of the non­
dashed places) are inherited from the arrow labels of the SADT page. All the 
colour sets are structurally equivalent and defined as follows: 

color C = record Ver: int * Info: string * Av: bool; 

The Version field is used to identify whether new tokens have arrived. The In­
formation field contains the name of the SADT arrow along which the token just 
travelled. It tells us where the token came from. Finally, there is an Availability 
field. This field is only rarely used, and hence we will not explain it. 



"'
l 

~
.
 .... ~ ~ n ~ >-c

S '" O<l (1
) 8'
 

.., g C
/)

 ~ >-c
S ~ S
' 

"I1
 

ci'i
' ::0
 

w
 

[#
V

er
 p

e
r'

-v
rn

cs
 

>
 

#V
er

 p
e

r'
-v

rn
cs

_
o

ld
j 

r.
::

:I
 

ID
E

N
T

IF
Y

 
~
 

V
A

R
IA

N
C

E
S

 
II

 
p

e
r'

-v
rn

cs
 

S
U

B
JE

C
T 

T
O

 

P
er

C
vr

nc
s 

A
N

A
LY

S
IS

 

CJ
 

A
22

24
53

1 

: ...
 \ 

: 
L~-

=<?
 

'i
l 

\ 
\:

./
 

(V
er

=
(#

V
er

 p
e

r'
-v

rn
cs

)+
 1,

 
In

fo
=

'S
el

ec
te

d 
V

ar
ia

nc
es

',A
v=

tr
ue

j 
@

+
(D

el
ay

 t
A

22
24

53
1)

 

[#
V

er
 s

eL
vr

n
cs

 
> 

#V
er

 s
e

L
vr

n
cs

_
o

ld
j 

D
E

T
E

R
M

IN
E

 
l 

~
C
A
U
S
E
S
O
F
 

....
 .
,
-
-
-
i
~
"
V
 A

R
IA

N
C

E
S

 
se

l_
vr

nc
s 

C
 

A
22

24
53

2 

I':
':"

 
: 

: 
':7

 

(V
e

r=
(#

V
e

r 
se

L
vr

n
cs

)+
1

, 
In

fo
=

'V
a

ri
a

n
ce

 R
oo

t 
C

au
se

s'
,A

v=
tr

ue
) 

@
+

(D
el

ay
 t

A
22

24
53

2)
 

0:
.' /j.l
 s 

no
t 

fir
st

 i
 \7

 
ti

l"
 

"
j
 

se
l 

vr
nc

s 
,D

E
T

E
R

M
IN

E
 

'
-
-
-
-
-
-
-
-
-
-
-
-
-
.
.
.
.
.
.
,
~
V
A
R
I
A
N
C
E
 

[E
J 

IM
P

A
C

T
S

 
ne

ed
_a

dd
l_

an
ly

s 
12

 
C

 
A

22
24

53
3 

[#
V

e
r 

v
rn

c
_

ro
o

L
c

a
u

s
e

s
 

> 
IV

ar
 v

rn
c_

ro
oL

ca
u

se
s_

ol
d

 
o

re
ls

e 
#V

er
 s

g
n

fc
n

U
m

p
a

ct
s 

>
 

#
V

e
r 

sg
n

fc
n

U
m

p
a

ct
s_

o
ld

j 
,
.
~
~
.
_
.
_
.
 

,p
e

r'
-a

n
ly

s_
re

s 
~
 

@
+

(D
el

ay
tA

22
24

53
4)

 _
 0
1

 
P

er
C

an
ly

sJ
es

ul
ts

 

n
e

e
d

_
a

d
d

L
a

n
ly

s 
@

+(
D

el
ay

 t
A

22
24

53
4)

 

'" tv n ~ ~
 ~ o .....
 

Z
 

~ (
; ~
 ::E
 

'" '" " ~ § 1 4'
 1 N

 
V

I 
V

I 



256 19 Nuclear Waste Management Programme 

It would of course have been possible to use a single common colour set name 
instead of defining a number of identical colour sets. However, this would have 
made the CPN models less comprehensible for the PF A team, because the SADT 
arrow labels convey important informal information about the purpose of the 
arrow. 

The CPN model is constructed in such a way that each place (dashed or not) 
always contains exactly one token. Hence there are always two arcs (or a double 
arc) between a transition and its surrounding places. This way of modelling may 
seem a bit strange for CPN people, but it is quite natural for SADT people who 
usually consider the inputs of an activity to be persistent material that can be 
used by several activities without destroying it. Actually, a similar modelling 
practice is used in many CPN models of hardware, where a physical line always 
has a value, high or low. Examples of this can be found in Chap. 11. 

The dashed places below each transition contain copies of the last tokens re­
moved from the input places. (there is a dashed place for each input place). This 
is used to determine whether the input places have received new tokens, i.e., to­
kens the transition has not yet dealt with. 

The dashed place above the third transition tells us whether it is the first time 
the transition occurs or not. Initially all places contain one token with colour: 

{Ver = 0, Info = "", Av = true}. 

The only exception is the dashed places above transitions. They contain a token 
with value: first. 

VrncjooLcauses 

[#Ver vmc_rooCcauses > 
#Ver vmc_rooCcauses_old 

I'-------® orelse 
#Ver sgnfcnUmpacts > 

I::::, N'~~;"~ ·ii:~~-O;'~(~~~~-) ~ 
PerCanlysjesults 

sgnfcnUmpacts -..1--: 
i i need_addl_anlys 
i 1.,-\ h i i @+(DelaytA2224534) 
\.--------------------------------------------------1--- --------- ---{--~------/ , , 

vrnc_rooCcauses_old i vrnc_rooCcauses 

)-:-S{ : 
tIl} 1 

Vrnc_ro~;auses i 
sgnfcnUmpacts_old ),sgnfcnumpacts 

-¥ 
(i2 " 
\~'/ 

SignificanUmpacts 

Fig. 19.5. Detailed look at one of the transitions in Fig. 19.4 



19.2 ePN Model of Nuclear Waste Management Programme 257 

Each guard checks whether there are enough input places with new tokens to 
match the crosses in a column of the decision table. When this is the case the 
transition can occur. Notice that the third guard contains logic to distinguish 
the first occurrence (specified by I-columns) from subsequent occurrences 
(specified by S-columns). At first glance, one would expect the transition in Fig. 
19.5 to make a similar test (because the modified decision table describes differ­
ent enabling rules for the first/subsequent occurrences). However, for the first 
occurrence the two inputs will be available simultaneously, and hence the de­
scription in Fig. 19.5 is correct. A more detailed explanation of this can be 
found in [41]. 

As indicated by the small C in the lower left corner, each transition has a 
code segment, i.e., some sequential code which is executed each time the transi­
tion occurs. The code segments are, among other things, responsible for creating 
the colour values of the output tokens. The actual values are determined from the 
input tokens and from a set of configuration data (accessed via reference vari­
ables). The configuration data determine the maximum number of times an ac­
tivity may fail (i.e., create output with demand for iteration), the probability of 
failure, and how much this probability is decreased each time the activity fails. 
The code segments are also responsible for updating the graphics of the event 
charts (to be explained beloW). The contents of the code segments are not shown 
in Fig. 19.4. It is just a bunch of trivial code for manipulating reference values 
and graphical objects. 

Each transition has a time delay describing the duration of the activity. The 
time delays are also part of the configuration data. They are accessed via refer­
ence variables by the ML function Delay. When the CPN model is initialised the 
reference variables get values that are read from a text file. In this way it be­
comes easy to experiment with different configurations. 

In our project, we manually added the dashed places and arcs and all arc ex­
pressions and guards. This was a rather trivial but time-consuming task. The 
following table shows the size of three of the submodels together with the num­
ber of person-days used to add net structure/inscriptions and the number of 
person-days used for testing: 

Model Pages Transitions Additions Testing 

PPC 12 34 6 days 5 days 

ERC 17 I 45 7 days 6 days 

PCOT 11 ~~-"- 3 days 3 days 
~-

From the examples earlier in the section, it should be obvious that most of the 
addition process can be automated. This will not only remove the time used for 
additions, it will also dramatically reduce the time used for testing. This idea is 
used in a new tool developed several years after our project. The tool allows the 
user to specify work flow models by means of SADT like diagrams accompanied 
by configuration data. The work flow models are then, totally automatically, 
translated into CPN models. For more information about this approach, see [40]. 



258 19 Nuclear Waste Management Programme 

19.3 Simulation of Nuclear Waste Management Programme 

Whenever one of the seven CPN submodels was finished, it was simulated, using 
a simple environment representing the interaction with the other submodels. The 
result of the simulation was a set of graphical reports, called event charts. A 
typical event chart is shown in Fig. 19.6. Each horizontal line represents an ac­
tivity. The leftmost field of the line contains the SADT identification number for 
the activity (displayed in the lower part of each transition). The rest of the line 
tells us when the transition has occurred. Each asterisk indicates an occurrence at 
the time shown in the upper line. If an activity occurs repeatedly at the same 
time, the asterisk is replaced by a digit (indicating the number of occurrences). 

The event charts were sent back to the PFA team for review. The charts gave 
the team members a more detailed understanding of the dynamics behind the 
SADT models they created. The event charts were used to validate the accuracy 
and completeness of the SADT submodels, e.g., to investigate whether the model 
reflected the intended behaviour and how well it interacted and co-operated with 
other submodels. Often the inspections resulted in requests for changes in the 
CPN model or redesign of pages in the SADT model. During the construction 
and simulation of the individual submodels a lot of information flow blockages 
were discovered (like the one described in Sect. 19.2). 

When all seven CPN models were finished they were put together and simu­
lated to investigate the behaviour of the entire model. This simulation revealed, 
e.g., a number of information flow blockages caused by inadequate interaction 
and co-operation between the different submodels, i.e., the seven major pro­
grammatic functions. 

Due to hardware and software limitations at the time our project was con­
ducted, we used a number of special techniques to combine the seven rather large 

110 120 130 140 150 1 
A222451 > .......•.................................•...........•...... 

A222452 > ...............................•.... * ...................... . 
A2224531 > ........•....•....................... * ..................... . 
A2224532 > ...................................... * .................... . 
A2224533 > .....•.....•.........................• *.* .. * ............... . 
A2224534 > ........................................ * .. * .............. . 
A222454 > .....................................•.... * .. * ............. . 

Fig. 19.6. Extract of an event chart from nuclear waste management programme 



19.3 Simulation of the Nuclear Waste Management Programme 259 

ePN models into a single simulation model. To obtain a simulation model that 
could be executed on the available computer, we turned each ePN model into a 
stand-alone ML program (without any graphics). Then the seven ML programs 
were combined into a single program by adding a few lines of ML code con­
necting the seven subprograms. Today this approach would no longer be neces­
sary, since it would be possible to combine the seven submodels directly into a 
single ePN model without exceeding the capacity of the available hardware and 
software. Here we will not describe in detail how we put the ML models to­
gether. Such a description can be found in [41]. 

Having combined the ePN submodels into a single simulation model, we were 
able to perform simulations of a model with more than 100 pages, 2000 places, 
and 300 transitions (not counting substitution transitions). 

As explained above, our simulations produce a set of event charts, each of 
which represents the activities of a single submodel. One of the submodels uses 
three different event charts and hence the combined simulation model produces 
nine different event charts, each of which is split into a number of pages 
(windows) representing different sections of the simulated time interval. Hence, 
a typical simulation may produce more than 60 pages (i.e., 60 windows) with 
event charts. To ease navigation through all this information, we created the 
overview chart shown in Fig. 19.7. This chart has a line for each of the nine 
event charts. Otherwise the overview chart has the same format as the event 
charts and is split into pages representing the same time intervals as the event 
charts. By double-clicking one of the rows in the overview chart the user jumps 
to the corresponding event chart. It is also possible to follow the link backwards, 
in order to return quickly to the overview chart. 

The overview chart in Fig. 19.7 shows the order in which the individual 
submodels become active. By looking at the chart is often easy to spot malfunc­
tions. As an example it can be seen that the les submodel has an activity at time 
339. This was not intended and hence it needs further investigation. 

Activity 
310 320 330 340 350 360 370 

Time 
PPC >******************* ********* ********* ** ................ . 
ERe > .•.. * .................. * ............................................. * ........ . 
PSE >*2** ........... 2**22** ........... ***22 ....................... ***2*2* ........ _, 

DES_CD > ....................................... ****2**** ***2***** ** ................. . 
DES PD > .............................................................................. . 

DES_FD_AB >. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .................. . 

ICS > ............................................................ , 

EIS > ............................................................................... . 

PCOT > ............................................................ . 

Fig. 19.7. Overview chart from nuclear waste management programme 



260 19 Nuclear Waste Management Programme 

19.4 Conclusions for Nuclear Waste Management Project 

Both the PFA team and the CPN team have learned useful lessons and gained 
valuable experience in this project. The PFA team obtained an improved SADT 
model. They were "forced" to provide a more precise description of the behav­
iour of the activities in the SADT model. To accomplish this level of description 
the PFA team had to consider each activity in the model more carefully. As a re­
sult they discovered many ambiguities, inconsistencies, and gaps in the SADT 
model. The SADT model was improved and many errors were found at an early 
stage. Additionally, the ability to simulate the CPN models gave the PFA team 
new insight into the detailed behaviour of the modelled waste management pro­
gramme - knowledge which it would have been impossible, or at least very dif­
ficult, to obtain directly from the non-executable SADT model. 

The CPN team identified and implemented improvements in the modelling 
and simulation tool as a consequence of the practical work with a large and non­
trivial model. We developed a technique for merging large simulation models. 
Furthermore, we discovered that it would be possible to make a totally automatic 
translation of (certain kinds) of SADT models into CPN models. This led to the 
creation of the work flow tool described in [40]. The tool makes the power of 
CPN simulation available to non-CPN experts. 

An obvious extension to the work reported in this chapter would be to take 
also the use of resources into account. Another extension would be to perform 
simulations with more realistic time delays. In most of our simulations each ac­
tivity was defined to use one time unit. Hence, we primarily investigated the or­
der in which activities occurred. 



References 

1. T. Andersen: Improved Methodology for the Design of Communication 
Protocols in Security Systems. SECU-DES, ESSI Project 10937, 1996. 

2. AT&T: ISDN Basic Rate Interface Specification: Network Layer, Basic 
Voice Services. AT&T Technical Reference Publication 8A-802-100, 1989. 

3. AT&T: ISDN Basic Rate Interface Specification: Four Supplementary Voice 
Services. AT&T Technical Reference Publication 8A-802-100, 1989. 

4. G. Balbo, S.C. Bruell, P. Chen, G. Chiola: An Example of Modelling and 
Evaluation of a Concurrent Program Using Colored Stochastic Petri Nets: 
Lamport's Fast Mutual Exclusion Algorithm. IEEE Transactions on Parallel 
and Distributed Systems, 3 (1992), IEEE Computer Society, 221-240. Also 
in [33], p. 533-559. 

5. 1. Berger: Target Evaluation and Weapon Assignment Demonstrator De­
sign. Defence Research Establishment Valcartier, Quebec, Canada, M-3138, 
Unclassified, 1992. 

6. J. Berger, L. Lamontagne: A Colored Petri Net Model for a Naval Com­
mand and Control System. In [54], p. 532-541. 

7. J. Billington, M.e. Wilbur-Ham, M.Y. Bearman: Automated Protocol Veri­
fication. In: M. Diaz (ed.): Protocol Specification, Testing, and Verification 
Vol. 5, Elsevier Science Publishers 1986, p. 59-70. 

8. S. Brandt, O.L. Madsen. Object-Oriented Distributed Programming in Beta. 
In: R. Guerraoui, O.M. Nierstrasz, and M. Riveill (eds.): Object-Based 
Distributed Programming, Proceedings of ECOOP'93, Kaisers1autern 1993, 
Lecture Notes in Computer Science Vol. 791, Springer-Verlag 1994, p. 
185-212. 

9. H. Brettschneider, H.J. Genrich, H.-M. Hanisch: Verification and Perform­
ance Analysis of Recipe-Based Controllers by Means of Dynamic Plant 
Models. In: J.e. Fransoo and W.G.M.M. Rutten (eds.): Proceedings of 2nd 
International Conference on Computer Integrated Manufacturing in the 
Process Industries, Eindhoven 1996, p. 128-142. 

10. C. Capellmann, H. Dibold: Petri Net Based Specifications of Services in an 
Intelligent Network. Experiences Gained from a Test Case Application. In 
[54], p. 542-551. 

11. e. Capellmann, H. Dibold: Formal Specifications of Services in an Intelli­
gent Network Using High-Level Petri Nets. In: Case Study Proceedings of 
the 15th International Conference on Application and Theory of Petri Nets, 
Zaragoza 1994. 



262 References 

12. L. Cherkasova, V. Kotov, T. Rokicki: On Net Modelling of Industrial Size 
Concurrent Systems. In: Case Study Proceedings of the 15th International 
Conference on Application and Theory of Petri Nets, Zaragoza 1994. 

13. S. Christensen, L.O. Jepsen: Modelling and Simulation of a Network Man­
agement System Using Hierarchical Coloured Petri Nets. In: E. Mosekilde 
(ed.): Modelling and Simulation 1991. Proceedings of the 1991 European 
Simulation Multiconference, Copenhagen 1991, Society for Computer 
Simulation 1991, p. 47-52. 

14. S. Christensen, I.B. J0rgensen: Analysing Bang & Olufsen's BeoLink 
AudiolVideo System Using Coloured Petri Nets. In: G. Balbo and P. Azema 
(eds.): Application and Theory of Petri Nets 1997. Proceedings of the 18th 
International Petri Net Conference, Toulouse 1997, Lecture Notes in Com­
puter Science, Springer-Verlag, to appear 1997. 

15. S. Christensen: Message Sequence Chans for DesignJCPN. User's Manual. 
Computer Science Department, University of Aarhus, Denmark. On-line 
version: http://www.daimi.aau.dkldesignCPN/. 

16. CCITT: Functional Specification and Description Language SDL. CCITT 
Red Book, Vol. 6, Recommendations Z.100-Z.104, CCITT, Geneva, 1984. 

17. H. Clausen, P.R. Jensen: Validation and Performance Analysis of Network 
Algorithms by Coloured Petri Nets. In [44], p. 280-289. 

18. H. Clausen, P.R. Jensen: Usage Parameter Control Algorithms in High 
Speed Networks. Master's Thesis, Computer Science Department, Aarhus 
University, Denmark, 1993. 

19. H. Clausen, P.R. Jensen: Analysis of Usage Parameter Control Algorithms 
for ATM Networks. In: S. Tohme and A Casaca (eds.): Broadband Com­
munications, II (C-24), Elsevier Science Publishers 1994, p. 297-310. 

20. AL. Davis: Mayfly. A General-Purpose, Scalable, Parallel Processing Ar­
chitecture. Journal of LISP and Symbolic Computation 5 (1993), No. 112. 

21. AL. Davis, B. Coates, R. Hodgson, R. Schediwy, K. Stevens: Mayfly Sys­
tem Hardware. Hewlett-Packard Laboratories, Technical Report HPL-SAL-
89-23, 1989. 

22. DREV: On the Use of Petri Nets in Naval Command and Control Systems. 
Defence Research Establishment Valcartier, Quebec, Canada, Informission 
Ltee, Contract WnOl-l-0665101-XSK, 1992. 

23. G.A Findlow, G. Gerrand: A Coloured Petri Net Model of ISDN Supple­
mentary Services. Telecom Australia Research Laboratories, Report 8115, 
1992. 

24. G.A Findlow, G.S. Gerrand, J. Billington, R.I. Fone: Modelling ISDN 
Supplementary Services Using Coloured Petri Nets. Proceedings of Com­
munications '92, Sydney, Australia, p. 37-41. 

25. D.J. Floreani, J. Billington, A Dadej: Designing and Verifying a Communi­
cations Gateway Using Coloured Petri Nets and DesignJCPN. In [56], p. 
153-171. 



References 263 

26. P.T. Gaughan, S. Yalamanchili: Adaptive Routing Protocols for Hypercube 
Interconnection Networks. Computer 26 (1993), 12-24. 

27. H.J. Genrich, H.-M. Hanisch, K Wollhaf: Verification of Recipe-Based 
Control Procedures by Means of Predicatetrransition Nets. In [55], p. 278-
297. 

28. H.J. Genrich, R.M. Shapiro: Formal Verification of an Arbiter Cascade. In: 
K. Jensen (ed.): Application and Theory of Petri Nets 1992. Proceedings of 
the 13th International Petri Net Conference, Sheffield 1992, Lecture Notes 
in Computer Science Vol. 616, Springer-Verlag 1992, p. 205-223. 

29. H.J. Genrich, R.M. Shapiro: A Design of a Cascadable Nacking Arbiter. In: 
Case Study Proceedings of the 14th International Conference on Application 
and Theory of Petri Nets, Chicago 1993. Extended version available as: 
Technical Report TR-93, Meta Software Corporation, 125 Cambridge Park 
Drive, Cambridge MA 02140, USA, 1993. 

30. J. Gray (ed.): The Benchmark Handbook for Database and Transaction 
Processing Systems. Morgan Kaufmann Publishers, San Mateo, California, 
1991. 

31. S. Haddad: A Reduction Theory for Coloured Nets. In: G. Rozenberg (ed.): 
Advances in Petri Nets 1989, Lecture Notes in Computer Science Vol. 424, 
Springer-Verlag 1990, p. 209-235. Also in [33], p. 399- 425. 

32. P. Huber, V.O. Pinci: A Formal Executable Specification of the ISDN Basic 
Rate Interface. In: Proceedings of the 12th International Conference on Ap­
plication and Theory of Petri Nets, Aarhus 1991, p. 1-21. 

33. K. Jensen, G. Rozenberg (eds.): High-Level Petri Nets. Theory and Appli­
cation. Springer-Verlag 1991. 

34. J.B. J0rgensen, L.M. Kristensen: Computer Aided Verification of Lam­
port's Fast Mutual Exclusion Algorithm Using Coloured Petri Nets and Oc­
currence Graphs with Symmetries. Computer Science Department, Aarhus 
University, Denmark. Submitted to IEEE Transactions on Parallel and Dis­
tributed Systems, 1996. 

35. J.B. J0rgensen, K.H. Mortensen: Modelling and Analysis of Distributed 
Program Execution in Beta Using Coloured Petri Nets. In [56], p. 249-268. 

36. L. Lamport: A Fast Mutual Exclusion Algorithm. ACM Transactions on 
Computer Systems 5 (1987), 1-11. 

37. O.L. Madsen, B. M0ller-Pedersen, K. Nygaard. Object-Oriented Program­
ming in the Beta Programming Language. ACM Press Books, Addison­
Wesley, 1993. 

38. D.A. Marca, C.L. McGowan: SADT. McGraw-Hill, New York, 1988. 

39. Meta Software: Design/IDEF User's Manual. Meta Software Corporation, 
125 Cambridge Park Drive, Cambridge MA 02140, USA, 1992. 

40. Meta Software: Work Flow Analysis. User's Manual. Meta Software Corpo­
ration, 125 Cambridge Park Drive, Cambridge MA 02140, USA, 1994. 



264 References 

41. K.H. Mortensen, V.O. Pinci: Modelling the Work Flow of a Nuclear Waste 
Management Program. In [55], p. 376-395. 

42. V.O. Pinci, R.M. Shapiro: An Integrated Software Development Methodol­
ogy Based on Hierarchical Colored Petri Nets. In: G. Rozenberg (ed.): Ad­
vances in Petri Nets 1991, Lecture Notes in Computer Science Vol. 524, 
Springer-Verlag 1991, p. 227-252. Also in [33], p. 649-667. 

43. V.O. Pinci: The Shawmut Project. In: Case Study Proceedings of the 14th 
International Conference on Application and Theory of Petri Nets, Chicago 
1993. 

44. PNPM93: Petri Nets and Performance Models. Proceedings of the 5th In­
ternational Workshop, Toulouse, France 1993, IEEE Computer Society 
Press. 

45. J.L. Rasmussen and M. Singh: Designing and Analysing a Security System 
by Means of Coloured Petri Nets. Master's Thesis, Computer Science De­
partment, Aarhus University, Denmark, 1995. 

46. lL. Rasmussen, M. Singh: Designing a Security System by Means of Col­
oured Petri Nets. In [56], p. 400-419. 

47. lL. Rasmussen, M. Singh: MimiclCPN. A Graphical Animation Utility for 
DesignJCPN. Computer Science Department, Aarhus University, Denmark. 
On-line version: http://www.daimi.aau.dkJdesignCPN/. 

48. E.P. Rathgeb: Modelling and Performance Comparison of Policing Mecha­
nisms for ATM Networks. IEEE Journal on Selected Areas in Communica­
tions 9, (1991), 325-334. 

49. T. Reenskaug et. al.: OORASS. Seamless Support for the Creation and 
Maintenance of Object Oriented Systems. Journal of Object-Oriented Pro­
gramming, 1992, 27-4l. 

50. G. Scheschonk, M. Timpe: Simulation and Analysis of a Document Storage 
System. In [55], p. 454-470. 

51. G. Scheschonk, M. Timpe: Modelling, Simulation and Evaluation of a Large 
Scale Document Storage System. In: Case Study Proceedings of the 16th In­
ternational Petri Net Conference, Turin 1995, p. 1-27. 

52. R.M. Shapiro: Validation of a VLSI Chip Using Hierarchical Coloured Petri 
Nets. Journal of Microelectronics and Reliability, Special Issue on Petri 
Nets, Pergamon Press, 1991. Also in [33], p. 667- 687. 

53. A. Valmari: Compositionality in State Space Verification Methods. In [56], 
p.29-56. 

54. M. Ajmone-Marsan (ed.): Application and Theory of Petri Nets 1993. Pro­
ceedings of the 14th International Petri Net Conference, Chicago 1993, 
Lecture Notes in Computer Science Vol. 691, Springer-Verlag 1993. 

55. In: R. Valette (ed.): Application and Theory of Petri Nets 1994. Proceed­
ings of the 15th International Petri Net Conference, Zaragoza 1994, Lecture 
Notes in Computer Science Vol. 815, Springer-Verlag 1994. 



References 265 

56. J. Billington and W. Reisig (eds.): Application and Theory of Petri Nets 
1996. Proceedings of the 17th International Petri Net Conference, Osaka 
1996, Lecture Notes in Computer Science Vol. 1091, Springer-Verlag 1996. 



Monographs in Theoretical Computer Science - An EA TCS Series 

C. Calude 
Information and Randomness 
An Algorithmic Perspective 

K. Jensen 
Coloured Petri Nets 
Basic Concepts, Analysis Methods 
and Practical Use, VOl.l 
2nded. 

K. Jensen 
Coloured Petri Nets 
Basic Concepts, Analysis Methods 
and Practical Use, Vol. 2 

K. Jensen 
Coloured Petri Nets 
Basic Concepts, Analysis Methods 
and Practical Use, Vol. 3 

A. Nait Abdallah 
The Logic of Partial Information 

Texts in Theoretical Computer Science - An EA TCS Series 

J. L. Balcazar, J. Diaz, J. Gabarr6 
Structural Complexity I 
2nd ed. (see also overleaf, Vol. 22) 

M.Garzon 
Models of Massive Parallelism 
Analysis of Cellular Automata 
and Neural Networks 

J. Hromkovic 
Communication Complexity 
and Parallel Computing 

Former volumes appeared as 

A. Leitsch 
The Resolution Calculus 

A. Salomaa 
Public-Key Cryptography 
2nd ed. 

K. Sikkel 
Parsing Schemata 
A Framework for Specification 
and Analysis of Parsing Algorithms 

EATCS Monographs on Theoretical Computer Science 

Vol. 5: W. Kuich, A. Salomaa 
Semirings, Automata, Languages 

Vol. 6: H. Ehrig, B. Mahr 
Fundamentals of Algebraic Specification 1 

Equations and Initial Semantics 

Vol. 7: F. Gecseg 
Products of Automata 

Vol. 8: F. Kroger 
Temporal Logic of Programs 

Vo!' 9: K. Weihrauch 
Computability 

Vo!' 10: H. Edelsbrunner 
Algorithms in Combinatorial Geometry 

Vo!' 12: J. Berstel, C. Reutenauer 
Rational Series and Their Languages 

Vo!' 13: E. Best, C. Fernandez C. 
Nonsequential Processes 
A Petri Net View 

Vol. 14: M. Jantzen 
Confluent String Rewriting 

Vo!' 15: S. Sippu, E. Soisalon-Soininen 
Parsing Theory 
Volume I: Languages and Parsing 

Vo!' 16: P. Padawitz 
Computing in Horn Clause Theories 

Vo!' 17: J. Paredaens, P. DeBra, M. Gyssens, 
D. Van Gucht 
The Structure of the 
Relational Database Model 

Vo!' 18: J. Dassow, G. Paun 
Regulated Rewriting 
in Formal Language Theory 



Vol. 19: M. Tofte 
Compiler Generators 
What they can do, what they might do, 
and what they will probably never do 

Vol. 20: S. Sippu, E. Soisalon-Soininen 
Parsing Theory 
Volume II: LR(k) and LL(k) Parsing 

Vol. 21: H. Ehrig, B. Mahr 
Fundamentals of Algebraic Specification 2 

Module Specifications and Constraints 

Vol. 22: J. 1. Balcazar, J. Diaz, J. Gabarr6 
Structural Complexity II 

Vol. 24: T. Gergely, 1. Ory 
First-Order Programming Theories 

R. Janicki, P. E. Lauer 
Specification and Analysis 
of Concurrent Systems 
The COSY Approach 

O. Watanabe (Ed.) 
Kolmogorov Complexity 
and Computational Complexity 

G. Schmidt, Th. Strohlein 
Relations and Graphs 
Discrete Mathematics for Computer Scientists 

S. 1. Bloom, Z. Esik 
Iteration Theories 
The Equational Logic of Iterative Processes 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0033002e00310029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




